Bored with Vieta's formulae?

Algebra Level 4

If α , β \alpha,\beta are the roots of the equation x 2 p ( x + 1 ) c = 0 x^{2}-p(x+1)-c =0 (where p , c p,c are real numbers ,not equal to zero) then α 2 + 2 α + 1 α 2 + 2 α + c + β 2 + 2 β + 1 β 2 + 2 β + c \large \frac{\alpha^{2}+2\alpha+1}{\alpha^{2}+2\alpha+c} +\frac{\beta^{2}+2\beta+1}{\beta^{2}+2\beta+c} is equal to:


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Manish Dash
Sep 1, 2015

F r o m V i e t a s R u l e , α + β = p α β = ( p + c ) T h e g i v e n e q u a t i o n h a s α a n d β a s i t s r o o t s . H e n c e α 2 p ( α + 1 ) = c ( i ) β 2 p ( β + 1 ) = c ( i i ) α 2 + 2 α + 1 α 2 + 2 α + c + β 2 + 2 β + 1 β 2 + 2 β + c = α 2 + 2 α + 1 α 2 + 2 α + α 2 p α p + β 2 + 2 β + 1 β 2 + 2 β + β 2 p β p = ( α + 1 ) 2 2 α ( α + 1 ) ( α + β ) ( α + 1 ) + ( β + 1 ) 2 2 β ( β + 1 ) ( β + 1 ) ( α + β ) = ( α + 1 ) 2 ( α + 1 ) ( α β ) + ( β + 1 ) 2 ( β + 1 ) ( β α ) = ( α + 1 ) ( α β ) + ( β + 1 ) ( β α ) = ( α + 1 ) ( α β ) ( β + 1 ) ( α β ) = α β α β = 1 From\quad Vieta's\quad Rule,\\ \alpha +\beta \quad =\quad p\\ \alpha \beta \quad =\quad -(p+c)\\ \\ The\quad given\quad equation\quad has\quad \alpha \quad and\quad \beta \quad as\quad its\quad roots.\quad Hence\quad \\ { \alpha }^{ 2 }-p(\alpha +1)\quad =\quad c\quad ----------(i)\\ { \beta }^{ 2 }-p(\beta +1)\quad =\quad c\quad ----------(ii)\\ \\ \frac { { \alpha }^{ 2 }+2\alpha +1 }{ { \alpha }^{ 2 }+2\alpha +c } +\frac { { \beta }^{ 2 }+2\beta +1 }{ { \beta }^{ 2 }+2\beta +c } \quad \\ =\quad \frac { { \alpha }^{ 2 }+2\alpha +1 }{ { \alpha }^{ 2 }+2\alpha +{ \alpha }^{ 2 }-p\alpha -p } +\frac { { \beta }^{ 2 }+2\beta +1 }{ { \beta }^{ 2 }+2\beta +{ \beta }^{ 2 }-p\beta -p } \\ =\frac { (\alpha +1{ ) }^{ 2 } }{ 2\alpha (\alpha +1)-(\alpha +\beta )(\alpha +1) } +\frac { (\beta +1{ ) }^{ 2 } }{ 2\beta (\beta +1)-(\beta +1)(\alpha +\beta ) } \\ =\quad \frac { (\alpha +1{ ) }^{ 2 } }{ (\alpha +1)(\alpha -\beta ) } +\frac { (\beta +1{ ) }^{ 2 } }{ (\beta +1)(\beta -\alpha ) } \\ =\quad \frac { (\alpha +1{ ) } }{ (\alpha -\beta ) } +\frac { (\beta +1{ ) } }{ (\beta -\alpha ) } \\ =\quad \frac { (\alpha +1{ ) } }{ (\alpha -\beta ) } -\frac { (\beta +1{ ) } }{ (\alpha -\beta ) } \\ =\quad \frac { \alpha -\beta }{ \alpha -\beta } \\ =\quad \boxed{1}

Moderator note:

Well, we also have to ensure that the denominator is non-zero right?

Well done ! : ) :)

Keshav Tiwari - 5 years, 9 months ago

Can you please explain me i , i i i,ii

Department 8 - 5 years, 9 months ago

Log in to reply

As α \alpha and β \beta are the roots of the given equation , when put in place of x , they make the equation zero.

Keshav Tiwari - 5 years, 9 months ago

you could also add the first two equations and get α + β + α β = c a n d s u b s t i t u t e i t . \alpha +\beta +\alpha \beta =c\\ and\quad substitute\quad it.

Rishi Sharma - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...