Boredom Buster!

Calculus Level 4

0 π / 2 d x ( 4 cos 2 x + 9 sin 2 x ) 2 = ? \large \int_0^{\pi/2} \dfrac {dx}{ (4\cos^2 x + 9\sin^2 x)^2 } = \, ?

13 π 864 \frac{13\pi}{864} 13 π 846 \frac{13\pi}{846} 13 846 \frac{13}{846} 13 364 \frac{13}{364} 13 π 364 \frac{13\pi}{364}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 11, 2017

I = 0 π 2 d x ( 4 cos 2 x + 9 sin 2 x ) 2 Since sin 2 θ + cos 2 θ = 1 = 0 π 2 d x ( 4 + 5 sin 2 x ) 2 Multiply up and down by sec 4 x = 0 π 2 sec 4 x ( 4 sec 2 x + 5 tan 2 x ) 2 d x = 0 π 2 ( tan 2 x + 1 ) sec 2 x ( 9 tan 2 x + 4 ) 2 d x Let u = tan x d u = sec 2 x d x = 0 u 2 + 1 ( 9 u 2 + 4 ) 2 d u = 0 1 9 ( 9 u 2 + 4 ) 4 9 + 1 ( 9 u 2 + 4 ) 2 d u = 1 9 0 d u 9 u 2 + 4 + 5 9 0 d u ( 9 u 2 + 4 ) 2 Let v = 3 2 u d v = 3 2 d u = 1 54 0 d v v 2 + 1 + 5 216 0 π 2 d θ sec 2 θ Let tan θ = 3 2 u sec 2 θ d θ = 3 2 d u = 1 54 tan 1 v 0 + 5 216 0 π 2 sin 0 θ cos 2 θ d θ = π 108 + 5 432 B ( 1 2 , 3 2 ) where B ( m , n ) is the beta function. = π 108 + 5 Γ ( 1 2 ) Γ ( 3 2 ) 432 Γ ( 2 ) where Γ ( s ) is the gamma function. = π 108 + 5 π ( 1 2 π ) 432 ( 1 ! ) = π 108 + 5 π 864 = 13 π 864 \begin{aligned} I & = \int_0^\frac \pi 2 \frac {dx}{(4\cos^2 x + 9\sin^2 x)^2} & \small \color{#3D99F6} \text{Since }\sin^2 \theta + \cos^2 \theta = 1 \\ & = \int_0^\frac \pi 2 \frac {dx}{(4 + 5\sin^2 x)^2} & \small \color{#3D99F6} \text{Multiply up and down by }\sec^4 x \\ & = \int_0^\frac \pi 2 \frac {\sec^4 x}{(4\sec^2 x + 5\tan^2 x)^2}dx \\ & = \int_0^\frac \pi 2 \frac {(\tan^2 x + 1)\sec^2 x}{(9\tan^2 x + 4)^2}dx & \small \color{#3D99F6} \text{Let }u = \tan x \implies du = \sec^2 x \ dx \\ & = \int_0^\infty \frac {u^2 + 1}{(9u^2 + 4)^2}du \\ & = \int_0^\infty \frac {\frac 19 (9u^2 + 4)-\frac 49 + 1}{(9u^2 + 4)^2}du \\ & = {\color{#3D99F6} \frac 19 \int_0^\infty \frac {du}{9u^2+4}}+ {\color{#D61F06} \frac 59 \int_0^\infty \frac {du}{(9u^2 + 4)^2}} & \small \color{#3D99F6} \text{Let }v = \frac 32u \implies dv = \frac 32 \ du \\ & = {\color{#3D99F6} \frac 1{54} \int_0^\infty \frac {dv}{v^2+1}}+ {\color{#D61F06} \frac 5{216} \int_0^\frac \pi 2 \frac {d\theta}{\sec^2 \theta}} & \small \color{#D61F06} \text{Let }\tan \theta = \frac 32u \implies \sec^2 \theta \ d\theta = \frac 32 \ du \\ & = \frac 1{54} \tan^{-1} v \bigg|_0^\infty + \frac 5{216} \int_0^\frac \pi 2 \sin^0 \theta \cos^2 \theta \ d\theta \\ & = \frac \pi {108} + \frac 5{432} \color{#3D99F6} B \left(\frac 12, \frac 32\right) & \small \color{#3D99F6} \text{where } B(m,n) \text{ is the beta function.} \\ & = \frac \pi {108} + \frac {5 \color{#3D99F6}\Gamma \left(\frac 12\right)\Gamma \left(\frac 32\right)}{432\color{#3D99F6}\Gamma (2)} & \small \color{#3D99F6} \text{where } \Gamma(s) \text{ is the gamma function.} \\ & = \frac \pi {108} + \frac {5 \color{#3D99F6} \sqrt \pi \left(\frac 12\sqrt \pi \right)}{432\color{#3D99F6}(1!)} \\ & = \frac \pi {108} + \frac {5\pi}{864} \\ & = \boxed{\dfrac {13\pi}{864}} \end{aligned}


References:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...