Boundary Conditions for Wave Solution

Given an arbitrary harmonic solution to the wave equation

y ( x , t ) = A sin ( x v t ) + B sin ( x + v t ) , y(x,t) = A \sin (x-vt) + B \sin (x+vt),

find the general solution, i.e. find the coefficients A A and B B given the following boundary conditions:

y ( 0 , t ) = 0 , y ( L , 0 ) = 1. y(0,t) = 0, \qquad y(L,0) = 1.

y ( x , t ) = sin x sin L y(x,t) =\frac{\sin x}{\sin L} y ( x , t ) = sin x cos L cos v t y(x,t) =\sin x \cos L \cos vt y ( x , t ) = sin x sin ( L v t ) y(x,t) =\sin x \sin (L-vt) y ( x , t ) = sin x cos v t sin L y(x,t) = \frac{\sin x \cos vt}{\sin L}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Matt DeCross
May 10, 2016

The condition y ( 0 , t ) = 0 y(0,t) = 0 gives the condition B A = 0 B-A = 0 on the coefficients, i.e. A = B A=B . The condition y ( L , 0 ) = 1 y(L,0) = 1 then gives:

1 = A sin L + A sin L A = 1 2 sin L . 1 = A \sin L + A \sin L \implies A = \frac{1}{2\sin L}.

Substituting in, one finds the solution:

y ( x , t ) = 1 2 sin L sin ( x v t ) + 1 2 sin L sin ( x + v t ) = sin x cos v t sin L . y(x,t) = \frac{1}{2\sin L} \sin (x-vt) + \frac{1}{2\sin L} \sin (x+vt) = \frac{\sin x \cos vt}{\sin L}.

How was the cos gotten

Anthony Onyia - 1 year, 2 months ago

Log in to reply

If you apply the angle sum/difference formula for sine:

sin(A+B) = sinAcosB+cosAsinB, sin(A-B) = sinAcosB - cosAsinB

you'll get the cosine term in the numerator above.

tom engelsman - 7 months, 1 week ago

product to sum formula : sin a * cos b = 1/2 [ sin (a + b) + sin ( a - b) ]

Austin Chang - 4 months ago

That is what I put and it was “incorrect “

hunt Bobo - 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...