Bounded by two paraboloids (Corrected)

Calculus Level 5

Find the volume bounded by the two paraboloids,

z = 20 0.1 x 2 0.2 ( y 5 ) 2 z = 20 - 0.1 x^2 - 0.2 (y - 5)^2

and

z = 0.1 ( x 4 ) 2 + 0.1 ( y 6 ) 2 z = 0.1 (x - 4)^2 + 0.1 (y - 6)^2


The answer is 2347.6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hosam Hajjir
Aug 31, 2020

We have,

z 1 = 20 0.1 x 2 0.2 ( y 5 ) 2 = 20 0.1 x 2 0.2 y 2 + 2 y 5 = 15 0.1 x 2 0.2 y 2 + 2 y z_1 = 20 - 0.1 x^2 - 0.2 (y - 5)^2 = 20 - 0.1 x^2 - 0.2 y^2 + 2 y - 5 = 15 - 0.1 x^2 - 0.2 y^2 + 2 y

z 2 = . 1 ( x 4 ) 2 + . 1 ( y 6 ) 2 = 0.1 x 2 + 0.1 y 2 0.8 x 1.2 y + 5.2 z_2 = .1 (x - 4)^2 + .1 (y - 6)^2 = 0.1 x^2 + 0.1 y^2 - 0.8 x - 1.2 y + 5.2

we have to find the intersection of this two surfaces, so equating the right hand sides of the above equations, gives the equation of projection of the curve of intersection onto the x y xy plane

15 0.1 x 2 0.2 y 2 + 2 y = 0.1 x 2 + 0.1 y 2 0.8 x 1.2 y + 5.2 15 - 0.1 x^2 - 0.2 y^2 + 2 y = 0.1 x^2 + 0.1 y^2 - 0.8 x - 1.2 y + 5.2

0.2 x 2 + 0.3 y 2 0.8 x 3.2 y 9.8 = 0 0.2 x^2 + 0.3 y^2 - 0.8 x - 3.2 y - 9.8 = 0

which is an equation of an ellipse.

Completing the squares for x and y , we obtain

0.2 ( x 2 ) 2 0.8 + 0.3 ( y 16 / 3 ) 2 1 6 2 / 30 9.8 = 0 0.2 (x - 2)^2 - 0.8 + 0.3 (y - 16/3 )^2 - 16^2 / 30 - 9.8 = 0

Multiply by 10 throughout

2 ( x 2 ) 2 + 3 ( y 16 / 3 ) 2 = 98 + 1 6 2 / 3 + 8 = 574 / 3 2 (x - 2)^2 + 3 (y - 16/3)^2 = 98 + 16^2/3 + 8 = 574/ 3

Normalize the right hand side

( x 2 ) 2 / ( 574 / 6 ) + ( y 16 / 3 ) 2 / ( 574 / 9 ) = 1 (x - 2)^2 / (574/6) + (y - 16/3)^2 / (574/9) = 1

Let a 2 = 574 / 6 a^2 = 574/6 and b 2 = 574 / 9 b^2 = 574/9

then parametrically, points inside the ellipse can be written as

x = 2 + a r cos t , y = 16 / 3 + b r sin t x = 2 + a r \cos t, y = 16/3 + b r \sin t

where t [ 0 , 2 π ] t \in [0, 2 \pi] and r [ 0 , 1 ] r \in [0, 1] .

now we'll integrate the difference between the z-values of the two paraboloids over the area bounded by the ellipse, this can be achieved by the following double integral

V = A ( z 1 z 2 ) d A = A ( z 1 ( x , y ) z 2 ( x , y ) ) d x d y V = \displaystyle \int_A (z_1 - z_2) dA = \iint_A (z_1(x, y) - z_2(x, y)) dx dy

From the expressions obtained above, this becomes,

V = A ( 0.2 x 2 + 0.3 y 2 0.8 x 3.2 y 9.8 ) d x d y V = \displaystyle \iint_A -(0.2 x^2 + 0.3 y^2 - 0.8 x - 3.2 y - 9.8 ) dx dy

Plugging the expressions for x x and y y into the integrand, and using the jacobian of the transformation we made, we obtain,

V = a b r = 0 1 t = 0 2 π ( 0.2 ( 2 + a r cos t ) 2 + 0.3 ( 16 / 3 + b r cos t ) 2 0.8 ( 2 + a r cos t ) 3.2 ( 16 / 3 + b r sin t ) 9.8 ) d t r d r V = a b \displaystyle \int_{r = 0}^{1} \int_{t = 0}^{2 \pi} -(0.2 (2 + a r \cos t)^2 + 0.3 (16/3 + b r \cos t)^2 - 0.8 (2 + a r \cos t) - 3.2 (16/3 + b r \sin t ) - 9.8 ) dt\hspace{4pt} r dr

Integrating the above expressions with respect to t t is a simple task. This is due to the fact that linear terms in cos t \cos t and sin t \sin t integrate to zero, and quadratic terms integrate to π \pi times the coefficient of cos 2 ( t ) \cos^2(t) or sin 2 ( t ) \sin^2(t) . All the other constants will integrate to their value multiplied by 2 π 2 \pi .

Hence,

V = 2 a b π r = 0 1 ( 0.8 0.3 ( 16 / 3 ) 2 + 1.6 + 3.2 ( 16 / 3 ) + 9.8 1 / 2 ( 0.2 a 2 r 2 + 0.3 b 2 r 2 ) r d r V = 2 a b \pi \displaystyle \int_{r = 0}^{1} ( -0.8 - 0.3(16/3)^2 + 1.6 + 3.2(16/3) + 9.8 - 1/2 ( 0.2 a^2 r^2 + 0.3 b^2 r^2 ) r dr

Adding up the constant terms and the coefficient of r 2 r^2 , we obtain,

V = 2 a b π r = 0 1 ( 19.13333333 ( 0.1 a 2 + 0.15 b 2 ) r 2 ) r d r V = 2 a b \pi \displaystyle \int_{r = 0}^{1} ( 19.13333333 - ( 0.1 a^2 + 0.15 b^2) r^2 ) r dr

Now, integrating with respect to r r , we obtain,

V = 2 a b π ( 1 2 ( 19.1333333 ) 1 4 ( 0.1 a 2 + 0.15 b 2 ) ) V = 2 a b \pi ( \frac{1}{2} (19.1333333) - \frac{1}{4} (0.1 a^2 + 0.15 b^2 ) )

Substituting a 2 = 574 / 6 a^2 = 574/6 , b 2 = 574 / 9 b^2 = 574/9 , we obtain the final value of V, namely,

V = 2 574 3 6 π ( 1 4 ) ( 19.13333333 ) 2347.6 V = 2 \dfrac{574}{3\sqrt{6} } \pi (\frac{1}{4})(19.13333333) \approx \boxed{2347.6}

@Hosam Hajjir Wow such a extreme hard work you have done here.
You are a real legend sir.
By the way at which subject you are good?

Talulah Riley - 9 months, 2 weeks ago

Log in to reply

He is clearly great in calculus.

Pi Han Goh - 9 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...