Bounds or no bounds?

Algebra Level 4

Finf the maximum value of ( 1 x ) ( 2 y ) ( 3 z ) ( x + y 2 + z 3 ) (1-x)(2-y)(3-z)\left(x+\dfrac{y}{2}+\dfrac{z}{3}\right) , where x < 1 x<1 , y < 2 y<2 , z < 3 z<3 , and x + y 2 + z 3 > 0 x+\dfrac{y}{2}+\dfrac{z}{3}>0 . If the maximum value can be expressed as 3 a 2 b \dfrac{3^a}{2^b} , find a b ab .


The answer is 35.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Alex Burgess
Feb 26, 2019

f ( x , y , z ) = ( 1 x ) ( 2 y ) ( 3 z ) ( x + y 2 + z 3 ) = 6 [ ( 1 x ) ( 1 y 2 ) ( 1 z 3 ) ( x + y 2 + z 3 ) ] f(x,y,z) = (1-x)(2-y)(3-z)(x+\frac{y}{2}+\frac{z}{3}) = 6[(1-x)(1-\frac{y}{2})(1-\frac{z}{3})(x+\frac{y}{2}+\frac{z}{3})] .

Using AM-GM inequality: [ ( 1 x ) ( 1 y 2 ) ( 1 z 3 ) ( x + y 2 + z 3 ) ] 1 4 3 4 [(1-x)(1-\frac{y}{2})(1-\frac{z}{3})(x+\frac{y}{2}+\frac{z}{3})]^\frac{1}{4} \leq \frac{3}{4} .

Hence, f ( x , y , z ) 6 ( 3 4 ) 4 = 6 3 4 2 8 = 3 5 2 7 . f(x,y,z) \leq 6 (\frac{3}{4})^4 = 6 * \frac{3^4}{2^8} = \frac{3^5}{2^7}.

Equality occurs when the values averaged are equal (to A A say):

This would be when A = ( 1 x ) = ( 1 y 2 ) = ( 1 z 3 ) = ( x + y 2 + z 3 ) = 3 3 A A = (1-x) = (1-\frac{y}{2}) = (1-\frac{z}{3}) = (x+\frac{y}{2}+\frac{z}{3}) = 3-3A . Hence, A = 3 4 , x = 1 4 , y = 1 2 , z = 3 4 A = \frac{3}{4}, x = \frac{1}{4}, y = \frac{1}{2}, z = \frac{3}{4} , these indeed satisfy the conditions in the question. Therefore, 3 5 2 7 \frac{3^5}{2^7} is the maximum value.

Do you not need to show that there exists ( x , y , z ) (x,y,z) for which f ( x ) = 3 5 2 7 f(x)=\frac{3^5}{2^7} ? Otherwise we've found an upper bound, but not necessarily a maximum.

Jordan Cahn - 2 years, 3 months ago

Yes, I forgot to add that, equality occurs when the values being averaged are equal. (I'll edit now)

Alex Burgess - 2 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...