Gentle Sum

Calculus Level 4

lim n 1 4 n 2 k = 1 n 4 n 2 k 2 \large \lim_{n\to\infty} \dfrac1{4n^2} \sum_{k=1}^n \sqrt{4n^2-k^2}

If the limit above equals to π P + 3 R \dfrac{\pi}P + \dfrac {\sqrt 3}R for positive integers P P and R R , find the value of P + R P + R .


The answer is 20.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ben Habeahan
Sep 7, 2015

This problem can we solve with I n t e g r a l Q u a d r a t u r e ( I n t e g r a l R i e m a n ) Integral Quadrature ( Integral Rieman )

Let function y = f ( x ) y= f(x) is continuous on an interval a x b a \leq x \leq b . Divide the interval a x b a \leq x \leq b into n n equal subintervals. The lenght Δ x \Delta x of each subinterval is Δ x = b a n \Delta x= \frac{b-a}{n} ; this number is the partition unit. The division points have coordinates: a = x 0 , x 1 , x 2 , , x k 1 , x k , , x n 1 , x n = b . a=x_0, x_1, x_2, \cdots,x_{k-1},x_k, \cdots, x_{n-1}, x_n=b.

If the subinterval n , n \rightarrow \infty, then we will have the area S , S,

S = lim n k = 0 n 1 f ( x k ) Δ x = lim n k = 1 n f ( x k ) Δ x = a b f ( x ) d x \begin{array}{lll}S&=&\lim_{n \rightarrow \infty} \sum_{k=0}^{n-1} f(x_k){ \Delta x} \\&= &\lim_{n \rightarrow \infty} \sum_{k=1}^{n} f(x_k){ \Delta x} \\&=&\int_{a}^{b} f(x) dx \end{array}

For question limit above,

S = lim n 1 4 n 2 k = 1 n 4 n 2 k 2 = lim n k = 1 n 1 4 n 4 ( k n ) 2 \begin{array}{lll}S&=&\lim_{n\rightarrow \infty} \frac{1}{4n^2} \sum_{k=1}^n \sqrt{4n^2-k^2} \\&=&\lim_{n\rightarrow \infty} \sum_{k=1}^n \frac{1}{4n} \sqrt{4-{(\frac{k}{n})}^2} \end{array}

Because,

a = x 0 = 0 , b = x n = 1 , Δ x = a b n = 1 n a=x_0=0,b=x_n=1, \Delta{x}= \frac{a-b}{n}= \frac{1}{n} and x k = k n f ( x k ) = 4 ( x k ) 2 x_k= \frac{k}{n} \implies f(x_k)=\sqrt{4-{(x_k)}^2}

We can have equality,

S = 1 4 0 1 4 x 2 d x \begin{array}{rrr}S&=&\frac{1}{4} \int_{0}^1 \sqrt{4-x^2}dx \end{array}

Let x = 2 sin θ , d x = 2 cos θ d θ ; x=2 \sin\theta, dx=2 \cos\theta d\theta; x = 0 , θ = 0 ; x = 1 , θ = π 6 x=0, \theta=0 ; x=1, \theta=\frac{\pi}{6}

S = 1 4 0 π 6 2 cos θ . 2 cos θ d θ = 0 π 6 c o s 2 θ d θ = 1 2 0 π 6 ( 1 + cos 2 θ ) d θ = 1 2 θ + 1 2 sin 2 θ 0 π 6 = π 12 + 3 8 \begin{array}{lrl} S&=&\frac{1}{4} \int_{0}^{\frac{\pi}{6}} 2 \cos\theta . 2 \cos\theta d\theta \\ &=&\int_{0}^{\frac{\pi}{6}} {cos}^2 \theta d\theta \\ &=&\frac{1}{2} \int_{0}^{\frac{\pi}{6}} (1+ \cos 2\theta) d\theta \\ &=&\frac{1}{2} \lgroup \theta +\frac{1}{2 } \sin 2\theta \rgroup_{0}^{\frac {\pi}{6}} \\ &=& \frac{\pi}{12}+\frac{\sqrt{3}}{8} \end{array}

P = 12 , R = 8 P + R = 20 P=12,R=8 \implies P+R= \boxed{20}

Arjen Vreugdenhil
Sep 23, 2015

lim n 1 4 n 2 k = 1 n 4 n 2 k 2 = lim n k = 1 n 1 2 n 1 ( k 2 n ) 2 , \lim_{n\to\infty}\frac1{4n^2}\sum_{k=1}^{n} \sqrt{4n^2-k^2} = \lim_{n\to\infty}\sum_{k=1}^{n} \frac1{2n}\sqrt{1-\left(\frac{k}{2n}\right)^2}, which is the definition of the Riemann integral, for x = k / 2 n x = k/2n . Note that the limits of the integral are given by 1 / 2 n 0 1/2n\to 0 and n / 2 n 1 / 2 n/2n\to 1/2 : = 0 1 / 2 d x 1 x . = \int_0^{1/2} dx \sqrt{1-x}. Since y = 1 x y = \sqrt{1-x} describes the top part of the unit circle, this integral is the area of a region enclosed by the unit circle, the coordinate axes, and the line x = 1 / 2 x = 1/2 .

This circle fragment can be further viewed as the union of a circle sector (extending 3 0 30^\circ clockwise from the y-axis) and a triangle. Their common side runs from the origin to the point ( sin 3 0 , cos 3 0 ) = ( 1 2 , 1 2 3 ) (\sin 30^\circ,\cos 30^\circ) = (\tfrac12,\tfrac12\sqrt3) . A sector = 3 0 36 0 π r 2 = π 12 ; A_{\text{sector}} = \frac{30^\circ}{360^\circ}\cdot \pi r^2 = \frac{\pi}{12}; A triangle = 1 2 1 2 1 2 3 = 3 8 . A_{\text{triangle}} = \tfrac12\cdot \tfrac12\cdot \tfrac12\sqrt3 = \frac{\sqrt 3}{8}. Thus the total area = the value of the integral = the value of the limit is equal to = π 12 + 3 8 \dots = \frac{\pi}{12} + \frac{\sqrt 3}{8} making P = 12 , R = 8 P = 12, R = 8 and the answer is 20.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...