Box of Circles

Geometry Level 4

In the given figure, the large circle touches three sides of the rectangle as shown. A line is drawn from the bottom right corner of the rectangle, tangent to the large circle and the two identical small circles. The large circle also touches the small circle on the right.

Find the ratio of the blue area to the red area.

196 49 π 27 2 π \dfrac{196-49\pi}{27-2\pi} 196 51 π 28 3 π \dfrac{196-51\pi}{28-3\pi} 196 52 π 26 3 π \dfrac{196-52\pi}{26-3\pi} 196 46 π 30 π \dfrac{196-46\pi}{30-\pi}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let label the figure as shown. Let the radius of the small circles be 1. Since A D B C AD||BC , D E C = B C E \angle DEC = \angle BCE and let it be θ \theta and t = tan θ 2 t = \tan \frac \theta 2 .

Then we note that D E = 1 t + 1 = 1 + t t DE = \dfrac 1t + 1 = \dfrac {1+t}t . Since C D = D E tan θ = 1 + t t 2 t 1 t 2 = 2 1 t CD = DE \tan \theta = \dfrac {1+t}t \cdot \dfrac {2t}{1-t^2} = \dfrac 2{1-t} . As C D = 2 r CD = 2r , where r r is the radius of the big circle, implying r = 1 1 t r = \dfrac 1{1-t} .

Now we have:

O F C O = sin θ 2 1 1 t 1 + t 2 t + 1 + 1 1 t = t 1 + t 2 Multiple up and down of LHS by t ( 1 t ) t ( 1 t ) 1 + t 2 + 2 t t 2 = t 1 + t 2 Rearrange 2 t = 1 + t 2 Square both sides and rearrange t = 3 4 \begin{aligned} \frac {OF}{CO} & = \sin \frac \theta 2 \\ \color{#3D99F6} \frac {\frac 1{1-t}}{\frac {\sqrt{1+t^2}}t + 1 + \frac 1{1-t}} & = \frac t{\sqrt{1+t^2}} & \small \color{#3D99F6} \text{Multiple up and down of LHS by }t(1-t) \\ \color{#3D99F6} \frac t{(1-t)\sqrt{1+t^2} + 2t-t^2} & = \frac t{\sqrt{1+t^2}} & \small \color{#3D99F6} \text{Rearrange} \\ 2 - t & = \sqrt{1+t^2} & \small \color{#3D99F6} \text{Square both sides and rearrange} \\ \implies t & = \frac 34 \end{aligned}

Then r = 1 1 t = 4 r = \dfrac 1{1-t} = 4 , A B = C D = 8 AB=CD=8 , D E = 1 + t t = 7 3 DE = \dfrac {1+t}t = \dfrac 73 , and B C = B F + F C = r + r t = 28 3 BC = BF+FC = r+\dfrac rt = \dfrac {28}3 . And:

A b l u e A r e d = [ A B C E ] π ( 1 2 ) π r 2 [ C D E ] π ( 1 2 ) = [ A B C D ] [ C D E ] 17 π 1 2 D E C D π = 28 3 8 1 2 7 3 8 17 π 1 2 7 3 8 π = 196 51 π 28 3 π \begin{aligned} \frac {A_{\color{#3D99F6}blue}}{A_{\color{#D61F06}red}} & = \frac {[ABCE]-\pi (1^2) - \pi r^2}{[CDE]-\pi(1^2)} \\ & = \frac {[ABCD]-[CDE] - 17\pi}{\frac 12 DE \cdot CD - \pi} \\ & = \frac {\frac {28}3 \cdot 8 - \frac 12 \cdot \frac 73 \cdot 8 - 17 \pi}{\frac 12 \cdot \frac 73 \cdot 8 - \pi} \\ & = \boxed{\dfrac {196-51\pi}{28-3\pi}} \end{aligned}

I think you forgot to include the labelled figure.

Digvijay Singh - 2 years, 4 months ago

Log in to reply

Yes, silly me. I was rushing out with my wife.

Chew-Seong Cheong - 2 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...