Boxing Integral

Calculus Level 4

4 4 t + t + t d t = ? \large \int_{-4}^4 \lfloor t + \lfloor t + \lfloor t \rfloor \rfloor \rfloor \, dt = \, ?


The answer is -12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 26, 2016

We note that t + t + t = 3 t \left \lfloor t + \left \lfloor t + \left \lfloor t \right \rfloor \right \rfloor \right \rfloor = 3 \left \lfloor t \right \rfloor , therefore:

4 4 t + t + t d t = 4 4 3 t d t = 3 ( 4 3 t d t + 3 2 t d t + 2 1 t d t + 1 0 t d t + 0 1 t d t + 1 2 t d t + 2 3 t d t + 3 4 t d t ) = 3 ( 4 3 4 d t + 3 2 3 d t + 2 1 2 d t + 1 0 1 d t + 0 1 0 d t + 1 2 1 d t + 2 3 2 d t + 3 4 3 d t ) = 3 ( 4 3 2 1 + 0 + 1 + 2 + 3 ) = 12 \begin{aligned} \int_{-4}^4 \left \lfloor t + \left \lfloor t + \left \lfloor t \right \rfloor \right \rfloor \right \rfloor dt & = \int_{-4}^4 3 \left \lfloor t \right \rfloor dt \\ & = 3\left( \int_{-4}^{-3} \left \lfloor t \right \rfloor dt + \int_{-3}^{-2} \left \lfloor t \right \rfloor dt + \int_{-2}^{-1} \left \lfloor t \right \rfloor dt + \int_{-1}^{0} \left \lfloor t \right \rfloor dt + \int_{0}^{1} \left \lfloor t \right \rfloor dt + \int_{1}^{2} \left \lfloor t \right \rfloor dt + \int_{2}^{3} \left \lfloor t \right \rfloor dt + \int_{3}^{4} \left \lfloor t \right \rfloor dt \right) \\ & = 3\left( \int_{-4}^{-3} -4 \space dt + \int_{-3}^{-2} -3 \space dt + \int_{-2}^{-1} -2 \space dt + \int_{-1}^{0} -1 \space dt + \int_{0}^{1} 0 \space dt + \int_{1}^{2} 1 \space dt + \int_{2}^{3} 2 \space dt + \int_{3}^{4} 3 \space dt \right) \\ & = 3(-4-3-2-1+0+1+2+3) \\ & = \boxed{-12} \end{aligned}

Nice..... I also did the same and had drawn the graph but instead of adding area algebrically I took the mod of the area and wrongly claimed the answer 48. Extension of the beautiful solution of @Chew-Seong Cheong

Rishabh Jain - 5 years, 4 months ago

t + t + t = 3 t \lfloor t + \lfloor t + \lfloor t \rfloor \rfloor \rfloor = 3\lfloor t \rfloor

4 4 t + t + t d t = 3 4 4 t d t \displaystyle \int_{-4}^{4}\lfloor t + \lfloor t + \lfloor t \rfloor \rfloor \rfloor dt = \displaystyle 3\int_{-4}^{4} \lfloor t \rfloor dt
Using the property,

a a f ( t ) d t = 0 a f ( t ) + f ( t ) d t \displaystyle \int_{-a}^{a} f(t)dt = \int_{0}^{a} f(t) + f(-t) dt
I = 3 4 4 t d t = 3 0 4 t + t d t = 3 0 4 t t 1 d t = 3 0 4 d t I = \displaystyle 3\int_{-4}^{4} \lfloor t \rfloor dt = 3\int_{0}^{4} \lfloor t \rfloor + \lfloor -t \rfloor dt = 3\int_{0}^{4} \lfloor t \rfloor - \lfloor t \rfloor - 1 dt = -3\int_{0}^{4} dt
I used the property , for t > 0 t = t 1 \lfloor -t \rfloor = -\lfloor t \rfloor - 1
I = 3 0 4 d t = 3 4 = 12 \therefore I = \displaystyle -3\int_{0}^{4}dt = -3 \cdot 4 = -12

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...