Brain works

Geometry Level 3

If in ∆ABC , a = 6 , b = 3 a= 6 , b= 3 and cos(A-B) = 4 / 5 , 4/5 , then find the area of ∆ABC.


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Using Sine Rule we know that:

a sin A = b sin B sin A sin b = a b = 6 3 = 2 sin A = 2 sin B \dfrac {a}{\sin{A}} = \dfrac {b}{\sin{B}} \quad \Rightarrow \dfrac {\sin{A}}{\sin{b}} = \dfrac {a}{b} = \dfrac {6}{3} = 2\quad \Rightarrow \sin{A} = 2\sin{B}

Let sin B = x cos B = 1 x 2 \quad \sin{B} = x \quad \Rightarrow \cos{B} = \sqrt{1-x^2}

sin A = 2 x cos A = 1 4 x 2 \quad \Rightarrow \sin{A} = 2x \quad \Rightarrow \cos{A} = \sqrt{1-4x^2}

cos A B = cos A cos B + sin A sin B = 4 5 \cos{A-B} = \cos{A}\cos{B}+\sin{A}\sin{B} = \dfrac {4}{5}

1 4 x 2 1 x 2 + ( 2 x ) ( x ) = 4 5 \Rightarrow \sqrt{1-4x^2}\sqrt{1-x^2}+(2x)(x) = \dfrac {4}{5}

1 4 x 2 1 x 2 = 4 5 2 x 2 \Rightarrow \sqrt{1-4x^2}\sqrt{1-x^2} = \dfrac {4}{5}-2x^2

( 1 4 x 2 ) ( 1 x 2 ) = ( 4 5 2 x 2 ) 2 \Rightarrow (1-4x^2)(1-x^2) =\left( \dfrac {4}{5}-2x^2\right)^2

1 5 x 2 + 4 x 2 = 16 25 16 5 x 2 + 4 x 4 \Rightarrow 1-5x^2 + 4x^2 = \dfrac {16}{25}-\dfrac {16}{5}x^2+4x^4

( 5 16 5 ) x 2 = 1 16 25 9 5 x 2 = 9 25 x = 1 5 \Rightarrow \left(5 -\dfrac {16}{5} \right) x^2 = 1 - \dfrac {16}{25} \quad \Rightarrow \dfrac {9}{5}x^2 = \dfrac {9}{25} \quad \Rightarrow x = \dfrac {1}{\sqrt{5}}

sin B = 1 5 cos B = 2 5 sin A = 2 5 cos A = 1 5 \Rightarrow \sin{B} = \frac {1}{\sqrt{5}} \quad \Rightarrow \cos{B} = \frac {2}{\sqrt{5}} \quad \Rightarrow \sin{A} = \frac {2}{\sqrt{5}} \quad \Rightarrow \cos{A} = \dfrac {1}{\sqrt{5}}

The area of A B C \triangle ABC is given by:

A = 1 2 ( 3 cos A + 6 cos B ) ( 6 sin B ) = 1 2 ( 3 5 + 12 5 ) ( 6 5 ) A = \frac{1}{2}(3\cos{A}+6\cos{B})(6\sin{B}) = \dfrac{1}{2}\left( \dfrac {3}{\sqrt{5}} + \dfrac {12}{\sqrt{5}} \right) \left( \dfrac {6}{\sqrt{5}} \right)

= 1 2 × 13 5 × 6 5 = 45 5 = 9 \quad = \dfrac{1}{2}\times \dfrac {13}{\sqrt{5}} \times \dfrac {6}{\sqrt{5}} = \dfrac {45}{5} = \boxed{9}

yeah same here but i found the side AB too

Mehul Chaturvedi - 6 years, 5 months ago

Log in to reply

yeah I expanded cos(a-b) and took out the value of side AB and then used herons formula.

Raven Herd - 6 years, 5 months ago
Ahmad Saad
Jul 17, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...