Calculate x → 2 π lim π ( π − 2 x ) tan ( x − 2 π ) 4 ( x − π ) cos 2 x
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Substituting x = 2 π + h , h → 0 gives the answer directly by using x → 0 lim h sin h = 1 and x → 0 lim h tan h = 1 .
Log in to reply
Does your method always work at any case ?
Log in to reply
Yes, it does but one has to be cautious about what h tends to.
x → 2 π lim π ( π − 2 x ) tan ( x − 2 π ) 4 ( x − π ) cos 2 x = x → 2 π lim π ( 2 π − x ) tan ( x − 2 π ) 2 ( x − π ) sin 2 ( 2 π − x ) = x → 2 π lim π ( 2 π − x ) tan ( 2 π − x ) 2 ( π − x ) sin ( 2 π − x ) ⋅ sin ( 2 π − x ) = x → 2 π lim π 2 ( π − x ) = π 2 ( π − 2 π ) = π 2 ( 2 π ) = 1
Problem Loading...
Note Loading...
Set Loading...
L = x → 2 π lim π ( π − 2 x ) tan ( x − 2 π ) 4 ( x − π ) cos 2 x = x → 2 π lim π ( π − 2 x ) ( − tan ( 2 π − x ) ) 4 ( x − π ) cos 2 x = x → 2 π lim − π ( π − 2 x ) cot x 4 ( x − π ) cos 2 x = x → 2 π lim − π ( π − 2 x ) 4 ( x − π ) sin x cos x = x → 2 π lim − π ( π − 2 x ) 2 ( x − π ) sin 2 x = x → 2 π lim − π ( π − 2 x ) 2 ( x − π ) sin ( π − 2 x ) = u → 0 lim π u ( π + u ) sin u = 1 Note that sin ( π − x ) = sin x Let u = π − 2 x Note that x → 0 lim x sin x = 1