Break the limit

Calculus Level 3

Calculate lim x π 2 4 ( x π ) cos 2 x π ( π 2 x ) tan ( x π 2 ) \large \lim_{x \rightarrow \frac{\pi}{2}} \frac{4 (x-\pi) \cos^{2} x}{\pi (\pi-2x) \tan \left(x-\frac{\pi}{2}\right)}


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 15, 2017

L = lim x π 2 4 ( x π ) cos 2 x π ( π 2 x ) tan ( x π 2 ) = lim x π 2 4 ( x π ) cos 2 x π ( π 2 x ) ( tan ( π 2 x ) ) = lim x π 2 4 ( x π ) cos 2 x π ( π 2 x ) cot x = lim x π 2 4 ( x π ) sin x cos x π ( π 2 x ) = lim x π 2 2 ( x π ) sin 2 x π ( π 2 x ) Note that sin ( π x ) = sin x = lim x π 2 2 ( x π ) sin ( π 2 x ) π ( π 2 x ) Let u = π 2 x = lim u 0 ( π + u ) sin u π u Note that lim x 0 sin x x = 1 = 1 \begin{aligned} L & = \lim_{x \to \frac \pi 2} \frac {4(x-\pi)\cos^2 x}{\pi(\pi-2x)\color{#3D99F6} \tan \left(x - \frac \pi 2\right)} \\ & = \lim_{x \to \frac \pi 2} \frac {4(x-\pi)\cos^2 x}{\pi(\pi-2x)\color{#3D99F6}\left(- \tan \left(\frac \pi 2 - x \right)\right)} \\ & = \lim_{x \to \frac \pi 2} {\color{#3D99F6} -} \frac {4(x-\pi)\cos^2 x}{\pi(\pi-2x)\color{#3D99F6}\cot x} \\ & = \lim_{x \to \frac \pi 2} - \frac {{\color{#3D99F6}4}(x-\pi)\color{#3D99F6}\sin x \cos x}{\pi(\pi-2x)} \\ & = \lim_{x \to \frac \pi 2} - \frac {{\color{#3D99F6}2}(x-\pi)\color{#3D99F6}\sin 2x}{\pi(\pi-2x)} & \small \color{#3D99F6} \text{Note that }\sin (\pi - x) = \sin x \\ & = \lim_{x \to \frac \pi 2} - \frac {2(x-\pi)\sin (\pi - 2x)}{\pi(\pi-2x)} & \small \color{#3D99F6} \text{Let } u = \pi - 2x \\ & = \lim_{u \to 0} \frac {(\pi + u)\color{#3D99F6}\sin u}{\pi \color{#3D99F6}u} & \small \color{#3D99F6} \text{Note that } \lim_{x \to 0} \frac {\sin x}x = 1 \\ & = \boxed{1} \end{aligned}

Substituting x = π 2 + h , h 0 x=\frac{\pi}{2}+h, h \rightarrow 0 gives the answer directly by using lim x 0 sin h h = 1 \displaystyle \lim_{x\rightarrow 0}\frac{\sin h}{h}=1 and lim x 0 tan h h = 1 \displaystyle \lim_{x\rightarrow 0}\frac{\tan h}{h}=1 .

Akshat Sharda - 4 years ago

Log in to reply

Does your method always work at any case ?

Jason Chrysoprase - 4 years ago

Log in to reply

Yes, it does but one has to be cautious about what h h tends to.

Akshat Sharda - 4 years ago
Skye Rzym
May 15, 2017

lim x π 2 4 ( x π ) cos 2 x π ( π 2 x ) tan ( x π 2 ) \lim_{x \rightarrow \frac{\pi}{2}} \frac{4 (x-\pi) \cos^{2} x}{\pi (\pi-2x) \tan (x-\frac{\pi}{2})} = lim x π 2 2 ( x π ) sin 2 ( π 2 x ) π ( π 2 x ) tan ( x π 2 ) =\lim_{x \rightarrow \frac{\pi}{2}} \frac{2 (x-\pi) \sin^{2} (\frac{\pi}{2}-x)}{\pi (\frac{\pi}{2}-x) \tan (x-\frac{\pi}{2})} = lim x π 2 2 ( π x ) sin ( π 2 x ) sin ( π 2 x ) π ( π 2 x ) tan ( π 2 x ) =\lim_{x \rightarrow \frac{\pi}{2}} \frac{2 (\pi-x) \sin (\frac{\pi}{2}-x) \cdot \sin (\frac{\pi}{2}-x)}{\pi (\frac{\pi}{2}-x) \tan (\frac{\pi}{2}-x)} = lim x π 2 2 ( π x ) π =\lim_{x \rightarrow \frac{\pi}{2}} \frac{2 (\pi-x)}{\pi} = 2 ( π π 2 ) π = 2 ( π 2 ) π = 1 =\frac{2 (\pi-\frac{\pi}{2})}{\pi}=\frac{2 (\frac{\pi}{2})}{\pi}=\boxed{1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...