Breather problem

Calculus Level 4

0 4 x 2 + x 2 1 + x 2 d x = 1 2 [ 3 a + ln ( b 2 + 17 ) 2 ln ( c + c 2 ) ] \int_0^4 \sqrt{x^2+\frac{x^2}{1+x^2}}dx=\frac{1}{2}\left[3\sqrt{a}+\ln(b\sqrt{2}+\sqrt{17})-\sqrt{2}-\ln \left(\sqrt{c}+\frac{c}{2} \right)\right]

where a a , b b , and c c are integers and a a and c c are square-free. Submit a + b + 2 c a+b+2c .


The answer is 41.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 17, 2021

I = 0 4 x 2 + x 2 1 + x 2 d x Let x = sinh θ d x = cosh θ d θ = 0 sinh 1 4 sinh 2 θ + sinh 2 θ cosh 2 θ cosh θ d θ = 0 sinh 1 4 cosh 2 θ + 1 sinh θ d θ Let u = cosh θ d u = sinh θ d θ = 1 17 u 2 + 1 d u Let u = sinh ϕ d u = cosh ϕ d ϕ = sinh 1 1 sinh 1 17 cosh 2 ϕ d ϕ = sinh 1 1 sinh 1 17 cosh 2 ϕ + 1 2 d ϕ = sinh 2 ϕ 4 + ϕ 2 sinh 1 1 sinh 1 17 Note that sinh 2 ϕ = 2 sinh ϕ cosh ϕ = 3 34 2 + sinh 1 17 2 2 2 sinh 1 1 2 and sinh 1 x = ln ( x + x 2 + 1 ) = 3 34 + ln ( 3 2 + 17 ) 2 ln ( 2 + 1 ) 2 \begin{aligned} I & = \int_0^4 \sqrt{x^2+\frac {x^2}{1+x^2}}\ dx & \small \blue{\text{Let }x = \sinh \theta \implies dx = \cosh \theta\ d\theta} \\ & = \int_0^{\sinh^{-1} 4} \sqrt{\sinh^2 \theta +\frac {\sinh^2 \theta}{\cosh^2 \theta}}\cdot \cosh \theta \ d\theta \\ & = \int_0^{\sinh^{-1} 4} \sqrt{\cosh^2 \theta + 1} \sinh \theta \ d\theta & \small \blue{\text{Let }u = \cosh \theta \implies du = \sinh \theta \ d\theta} \\ & = \int_1^{\sqrt{17}} \sqrt{u^2+1} \ du & \small \blue{\text{Let }u = \sinh \phi \implies du = \cosh \phi\ d\phi} \\ & = \int_{\sinh^{-1}1}^{\sinh^{-1} \sqrt{17}} \cosh^2 \phi \ d \phi \\ & = \int_{\sinh^{-1}1}^{\sinh^{-1} \sqrt{17}} \frac {\cosh 2\phi +1}2\ d \phi \\ & = \frac \blue{\sinh 2\phi}4 + \frac \phi 2 \ \bigg|_{\sinh^{-1}1}^{\sinh^{-1} \sqrt{17}} & \small \blue{\text{Note that }\sinh 2\phi = 2\sinh \phi \cosh \phi} \\ & = \frac {3\sqrt{34}}2 + \frac \blue{\sinh^{-1} \sqrt{17}}2 - \frac {\sqrt 2}2 - \frac \blue{\sinh^{-1} 1}2 & \small \blue{\text{and }\sinh^{-1} x = \ln (x + \sqrt{x^2+1})} \\ & = \frac {3\sqrt{34} +\ln(3\sqrt 2 + \sqrt{17}) - \sqrt 2 - \ln (\sqrt 2 +1)}2 \end{aligned}

Therefore a + b + 2 c = 34 + 3 + 2 2 = 41 a+b+2c = 34 + 3 + 2\cdot 2 = \boxed{41} .


Reference: Hyperbolic trigonometric functions

Very interesting solution. Good job.

James Wilson - 4 months, 3 weeks ago

Log in to reply

Yes. Substituting sinh u \sinh u is easier than tan u \tan u . Nice problem.

Chew-Seong Cheong - 4 months, 3 weeks ago

Indeed an elegant solution! I made 2 trig substitutions as well but not hyperbolic...and my solution is much lengthier.

Veselin Dimov - 4 months, 3 weeks ago

Log in to reply

Yes, next time use sinh u \sinh u instead of tan u \tan u . It is easier.

Chew-Seong Cheong - 4 months, 3 weeks ago

Chew-Seong Cheong is very wise in his solutions. Gotta love Osbourne's Rule.

James Wilson - 4 months, 3 weeks ago

Hi, Chew-Seong Cheong. I found a typo in your solution. It should say 34 \sqrt{34} at the end, but it says 32 \sqrt{32} . Also, my latest problem, "Colliding Spring System," should be labeled as "Classical Mechanics," but I labeled it "Calculus." You can change it if you think "Classical Mechanics" is more suitable.

James Wilson - 4 months, 3 weeks ago

Log in to reply

Thanks, I have amended it. I thought you can do the changes on your own problems. Let me check. You can provide a link to your problem by using [problem title] {the link} (no space between [] and {}).

Chew-Seong Cheong - 4 months, 3 weeks ago

I don't see any way that lets me change it myself. You're right. I should've provided a link. I don't know what I was thinking. I appreciate your kindness.

James Wilson - 4 months, 3 weeks ago
Sathvik Acharya
Jan 17, 2021

Claim: x 2 + x 2 1 + x 2 d x = ln ( x 2 + 1 + x 2 + 2 ) + ( x 2 + 1 ) ( x 2 + 2 ) 2 + C \int \sqrt{x^2+\frac{x^2}{1+x^2}} \,\mathrm{d}x=\frac{\ln\left(\sqrt{x^2+1}+\sqrt{x^2+2}\right)+\sqrt{(x^2+1)(x^2+2)}}{2}+C Proof: x 2 + x 2 1 + x 2 = x 4 + 2 x 2 x 2 + 1 = x x 2 + 2 x 2 + 1 \sqrt{x^2+\frac{x^2}{1+x^2}} = \sqrt{\frac{x^4+2x^2}{x^2+1}}=\frac{x\sqrt{x^2+2}}{\sqrt{x^2+1}} Let a = x 2 + 1 d a d x = x x 2 + 1 d x = a a 2 1 d a a=\sqrt{x^2+1}\implies \dfrac{\mathrm{d}a}{\mathrm{d}x}=\dfrac{x}{\sqrt{x^2+1}}\implies \mathrm{d}x=\dfrac{a}{\sqrt{a^2-1}}\mathrm{d}a . So we have, x x 2 + 2 x 2 + 1 d x = a 2 1 a 2 + 1 a a a 2 1 d a = a 2 + 1 d a = ln ( a 2 + 1 + a ) + a a 2 + 1 2 + C = ln ( x 2 + 1 + x 2 + 2 ) + ( x 2 + 1 ) ( x 2 + 2 ) 2 + C \begin{aligned} \int \frac{x\sqrt{x^2+2}}{\sqrt{x^2+1}} \,\mathrm{d}x&= \int \frac{\sqrt{a^2-1}\cdot \sqrt{a^2+1}}{a}\cdot \dfrac{a}{\sqrt{a^2-1}}\mathrm{d}a \\ &=\int \sqrt{a^2+1} \,\mathrm{d}a \\ &=\frac{\ln\left(\sqrt{a^2+1}+a\right)+a\sqrt{a^2+1}}{2}+C \\ &=\frac{\ln\left(\sqrt{x^2+1}+\sqrt{x^2+2}\right)+\sqrt{(x^2+1)(x^2+2)}}{2}+C \end{aligned}


Therefore, 0 4 x 2 + x 2 1 + x 2 = ln ( 4 2 + 1 + 4 2 + 2 ) + ( 4 2 + 1 ) ( 4 2 + 2 ) 2 ln ( 0 2 + 1 + 0 2 + 2 ) + ( 0 2 + 1 ) ( 0 2 + 2 ) 2 = 1 2 ( 3 34 + ln ( 3 2 + 17 ) 2 ln ( 2 + 1 ) ) \begin{aligned} \int_{0}^4 \sqrt{x^2+\frac{x^2}{1+x^2}}&=\frac{\ln\left(\sqrt{4^2+1}+\sqrt{4^2+2}\right)+\sqrt{(4^2+1)(4^2+2)}}{2}-\frac{\ln\left(\sqrt{0^2+1}+\sqrt{0^2+2}\right)+\sqrt{(0^2+1)(0^2+2)}}{2} \\ &=\frac{1}{2} \left(3\sqrt{34}+\ln (3\sqrt{2}+\sqrt{17})-\sqrt{2}-\ln (\sqrt{2}+1)\right) \end{aligned} a = 34 , b = 3 , c = 2 a + b + 2 c = 41 \implies a=34,\;b=3,\;c=2 \implies a+b+2c=\boxed{41}

Log in to reply

Galdly. Let a = 1 2 ( t 1 t ) . a=\frac{1}{2}\Big(t-\frac{1}{t}\Big). a 2 + 1 = 1 4 ( t 1 t ) 2 + 1 = 1 4 ( t 2 2 + 1 t 2 ) + 1 = 1 4 ( t 2 + 2 + 1 t 2 ) = 1 2 ( t + 1 t ) . \Rightarrow \sqrt{a^2+1}=\sqrt{\frac{1}{4}\Big(t-\frac{1}{t}\Big)^2+1}=\sqrt{\frac{1}{4}\Big(t^2-2+\frac{1}{t^2}\Big)+1}=\sqrt{\frac{1}{4}\Big(t^2+2+\frac{1}{t^2}\Big)}=\frac{1}{2}\Big(t+\frac{1}{t}\Big). Then we have d a = 1 2 ( 1 + 1 t 2 ) d t . da=\frac{1}{2}\Big(1+\frac{1}{t^2}\Big)dt. So, a 2 + 1 d a = 1 2 ( t + 1 t ) 1 2 ( 1 + 1 t 2 ) d t = 1 4 [ t + 2 t + 1 t 3 ] d t = 1 8 t 2 + 1 2 ln t 1 8 t 2 + C = 1 8 ( a + a 2 + 1 ) 2 + 1 2 ln ( a + a 2 + 1 ) 1 8 ( a + a 2 + 1 ) 2 + C \int \sqrt{a^2+1}da = \int \frac{1}{2}\Big(t+\frac{1}{t}\Big)\frac{1}{2}\Big(1+\frac{1}{t^2}\Big)dt = \int \frac{1}{4}\Big[t+\frac{2}{t}+\frac{1}{t^3}\Big]dt=\frac{1}{8}t^2+\frac{1}{2}\ln{t}-\frac{1}{8t^2} +C = \frac{1}{8}\Big(a+\sqrt{a^2+1}\Big)^2+\frac{1}{2}\ln\Big(a+\sqrt{a^2+1}\Big)-\frac{1}{8\Big(a+\sqrt{a^2+1}\Big)^2}+C . (You should check my work.) Very efficient method, by the way. Good job. (By the way, you typed the answer as 21 instead of 41.)

James Wilson - 4 months, 3 weeks ago

Log in to reply

Thanks., I have corrected it. Also, nice problem :)

Sathvik Acharya - 4 months, 3 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...