Brilli the bug

Calculus Level 3

Brilli the Bug has set out on a journey of infinite steps starting at the origin of the x y xy -plane. It moves in the following manner:

  1. After each, n n th step, it turns 9 0 90^\circ counter-clockwise
  2. Each n n th step is of length D n D_{n} where D n D_{n} is given by D n = 2 ( n + 1 ) 2 D_{n} = \dfrac{2}{(n+1)^{2}} for n 0 n \geq 0 .

If the final displacement of brilli from the starting is given by 1 α β G γ + π η \dfrac{1}{\alpha}\sqrt{ \beta G^{\gamma} + \pi^{\eta}} , find α + β + γ + η \alpha +\beta +\gamma +\eta .

Notation: G G denotes the Catalan's constant .


The answer is 2334.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Michael Huang
Dec 13, 2016

Let x x denote the horizontal coordinate and y y the vertical coordinate. Without loss of generality, we can assume that the first step is north (in the y y -direction), then left (in the x x -direction), then south, fourth right, and so on ad infinitum. In this case, the final x x -displacement is x-displacement = n = 0 2 ( 1 ) n ( 2 n + 1 ) 2 = 2 n = 0 ( 1 ) n ( 2 n + 1 ) 2 = 2 G \begin{array}{rl} \text{x-displacement} &= \sum\limits_{n=0}^{\infty} \dfrac{2(-1)^{n}}{(2n + 1)^2}\\ &= 2\sum\limits_{n=0}^{\infty} \dfrac{(-1)^{n}}{(2n + 1)^2}\\ &= 2G \end{array} whereas the final y y -displacement is y-displacement = n = 0 2 ( 1 ) n ( 2 n + 2 ) 2 = 1 2 n = 0 ( 1 ) n ( n + 1 ) 2 = 1 2 ( π 2 12 ) = π 2 24 \begin{array}{rl} \text{y-displacement} &= \sum\limits_{n=0}^{\infty} \dfrac{2(-1)^{n}}{(2n + 2)^2}\\ &= \dfrac{1}{2}\sum\limits_{n=0}^{\infty} \dfrac{(-1)^n}{(n + 1)^2}\\ &= \dfrac{1}{2} \left(\dfrac{\pi^2}{12}\right)\\ &= \dfrac{\pi^2}{24} \end{array} So the final displacement after infinite steps is ( x-displacement ) 2 + ( y-displacement ) 2 = ( 2 G ) 2 + ( π 2 24 ) 2 = 1 24 2304 G 2 + π 4 \begin{array}{rl} \sqrt{\left(\text{x-displacement}\right)^2 + \left(\text{y-displacement}\right)^2} &= \sqrt{\left(2G\right)^2 + \left(\dfrac{\pi^2}{24}\right)^2}\\ &= \dfrac{1}{24}\sqrt{2304G^2 + \pi^4} \end{array} where α = 24 , β = 2304 , γ = 2 , δ = 6 \alpha = 24, \beta = 2304, \gamma = 2, \delta = 6 . Thus, α + β + γ + δ = 2334 \alpha + \beta + \gamma + \delta = \boxed{2334}

Chew-Seong Cheong
Aug 18, 2017

Consider the complex number z = x + i y z = x+iy , then z |z| is the displacement of Brilli from the origin. We note that z 0 = 1 ( 0 + 1 ) 2 = 2 1 2 z_0 = \dfrac 1{(0+1)^2} = \dfrac 2{1^2} , z 1 = 2 1 2 + 2 i 2 2 z_1 = \dfrac 2{1^2} + \dfrac {2i}{2^2} , z 2 = 2 1 2 + 2 i 2 2 + 2 i 2 3 2 z_2 = \dfrac 2{1^2} + \dfrac {2i}{2^2} + \dfrac {2i^2}{3^2} and so on, implying:

z = 2 1 2 + 2 i 2 2 + 2 i 2 3 2 + 2 i 3 4 2 + 2 i 4 5 2 + 2 i 5 6 2 + = 2 i ( i 1 2 + i 2 2 2 + i 3 3 2 + i 4 4 2 + i 5 5 2 + i 6 6 2 + ) = 2 i ( i 1 2 1 2 2 i 3 2 + 1 4 2 + i 5 2 1 6 2 ) = 2 ( 1 1 2 + i 2 2 1 3 2 i 4 2 + 1 5 2 + i 6 2 + ) = 2 ( 1 1 2 1 3 2 + 1 5 2 ) + 2 i ( 1 2 2 1 4 2 + 1 6 2 + ) = 2 G + 2 i 2 2 ( 1 1 2 1 2 2 + 1 3 2 + ) where G is the Catalan’s constant. = 2 G + i 2 ( 1 1 2 + 1 2 2 + 1 3 2 + 2 ( 1 2 2 + 1 4 2 + 1 6 2 + ) ) = 2 G + i 2 ( 1 1 2 + 1 2 2 + 1 3 2 + 2 2 2 ( 1 1 2 + 1 2 2 + 1 3 2 + ) ) = 2 G + i 4 ( 1 1 2 + 1 2 2 + 1 3 2 + ) = 2 G + i 4 ζ ( 2 ) where ζ ( ) is the Riemann zeta function. = 2 G + i 4 π 2 6 = 2 G + i π 2 24 \begin{aligned} z_\infty & = \frac 2{1^2} + \frac {2i}{2^2} + \frac {2i^2}{3^2} + \frac {2i^3}{4^2} + \frac {2i^4}{5^2} + \frac {2i^5}{6^2} + \cdots \\ & = \frac 2i \left(\frac i{1^2} + \frac {i^2}{2^2} + \frac {i^3}{3^2} + \frac {i^4}{4^2} + \frac {i^5}{5^2} + \frac {i^6}{6^2} + \cdots \right) \\ & = \frac 2i \left(\frac i{1^2} - \frac 1{2^2} - \frac i{3^2} + \frac 1{4^2} + \frac i{5^2} - \frac 1{6^2} - \cdots \right) \\ & = 2 \left(\frac 1{1^2} + \frac i{2^2} - \frac 1{3^2} - \frac i{4^2} + \frac 1{5^2} + \frac i{6^2} + \cdots \right) \\ & = 2 {\color{#3D99F6}\left(\frac 1{1^2} - \frac 1{3^2} + \frac 1{5^2} - \cdots \right)} + 2i \left(\frac 1{2^2} - \frac 1{4^2} + \frac 1{6^2} + \cdots \right) \\ & = 2 {\color{#3D99F6}G} + \frac {2i}{2^2} \left(\frac 1{1^2} - \frac 1{2^2} + \frac 1{3^2} + \cdots \right) & \small \color{#3D99F6} \text{where }G \text{ is the Catalan's constant.} \\ & = 2G + \frac i2 \left(\frac 1{1^2} + \frac 1{2^2} + \frac 1{3^2} + \cdots - 2 \left(\frac 1{2^2} + \frac 1{4^2} + \frac 1{6^2} + \cdots \right) \right) \\ & = 2G + \frac i2 \left(\frac 1{1^2} + \frac 1{2^2} + \frac 1{3^2} + \cdots - \frac 2{2^2} \left(\frac 1{1^2} + \frac 1{2^2} + \frac 1{3^2} + \cdots \right) \right) \\ & = 2G + \frac i4 \color{#3D99F6}\left(\frac 1{1^2} + \frac 1{2^2} + \frac 1{3^2} + \cdots \right) \\ & = 2G + \frac i4 \cdot \color{#3D99F6} \zeta (2) & \small \color{#3D99F6} \text{where }\zeta (\cdot) \text{ is the Riemann zeta function.} \\ & = 2G + \frac i4 \cdot \color{#3D99F6} \frac {\pi^2}6 \\ & = 2G + i\frac {\pi^2}{24} \end{aligned}

z = 4 G 2 + π 4 2 4 2 = 1 24 4 2 4 2 G 2 + π 4 \implies \left|z_\infty \right| = \sqrt{4G^2 + \dfrac {\pi^4}{24^2}} = \dfrac 1{24}\sqrt {4\cdot 24^2 G^2 + \pi^4}

α + β + γ + δ = 24 + 4 2 4 2 + 2 + 4 = 2334 \implies \alpha + \beta + \gamma + \delta = 24 + 4 \cdot 24^2 + 2+4 = \boxed{2334}


References:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...