Brilliant Games - Quarter Quell 2

Algebra Level 2

What is the value of

1 1 4 + 1 4 2 1 4 3 + 1 4 4 ? 1 - \frac{1}{4} + \frac{1}{4^2} - \frac{1}{4^3 } + \frac{1}{4^4 } - \ldots ?

4 5 \frac{4}{5} 2 3 \frac{ 2}{3} 5 4 \frac{5}{4} 3 2 \frac{3}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Vaibhav Prasad
Mar 9, 2015

Let 1 1 4 + 1 4 2 1 4 3 + 1 4 4 . . . . . . . = x 1-\frac { 1 }{ 4 } +\frac { 1 }{ 4^{ 2 } } -\frac { 1 }{ 4^{ 3 } } +\frac { 1 }{ 4^{ 4 } } -.......\quad =\quad x

Multiplying both sides with 16 16 , we get

16 4 + 1 1 4 + 1 4 2 1 4 3 . . . . . . . = 16 x 16 4 + ( 1 1 4 + 1 4 2 1 4 3 . . . . . . . ) = 16 x 16 4 + x = 16 x 12 + x = 16 x 12 = 15 x 12 15 = x 4 5 = x 16-4+1-\frac { 1 }{ 4 } +\frac { 1 }{ 4^{ 2 } } -\frac { 1 }{ { 4 }^{ 3 } } .......\quad =\quad 16x\\ \Rightarrow 16-4+\left( 1-\frac { 1 }{ 4 } +\frac { 1 }{ 4^{ 2 } } -\frac { 1 }{ { 4 }^{ 3 } } ....... \right) \quad =\quad 16x\\ \Rightarrow 16-4+x\quad =\quad 16x\\ \Rightarrow 12+x\quad =\quad 16x\\ \Rightarrow 12\quad =\quad 15x\\ \Rightarrow \frac { 12 }{ 15 } \quad =\quad x\\ \Rightarrow \boxed{\frac { 4 }{ 5 }} \quad =\quad x

That's a nice approach of dealing with GP's with a negative term (other than substituting in the formula directly, of course).

Chung Kevin - 6 years, 3 months ago
Aryan Gaikwad
Mar 11, 2015

x = 1 1 4 1 + 1 4 2 1 4 3 + 1 4 4 x 4 = 1 4 1 1 4 2 + 1 4 3 1 4 4 + 1 4 5 x + x 4 = 1 + 1 4 1 1 4 1 + 1 4 2 1 4 2 x + x 4 = 1 4 x + x = 4 5 x = 4 x = 4 5 x=1-\frac { 1 }{ { 4 }^{ 1 } } +\frac { 1 }{ { 4 }^{ 2 } } -\frac { 1 }{ { 4 }^{ 3 } } +\frac { 1 }{ { 4 }^{ 4 } } -\dots \\ \frac { x }{ 4 } =\frac { 1 }{ { 4 }^{ 1 } } -\frac { 1 }{ { 4 }^{ 2 } } +\frac { 1 }{ { 4 }^{ 3 } } -\frac { 1 }{ { 4 }^{ 4 } } +\frac { 1 }{ { 4 }^{ 5 } } -\dots \\ x+\frac { x }{ 4 } =1+\frac { 1 }{ { 4 }^{ 1 } } -\frac { 1 }{ { 4 }^{ 1 } } +\frac { 1 }{ { 4 }^{ 2 } } -\frac { 1 }{ { 4 }^{ 2 } } \dots \\ x+\frac { x }{ 4 } =1\\ 4x+x=4\\ 5x=4\\ x=\frac { 4 }{ 5 }

Nice solution :)

Chung Kevin - 6 years, 3 months ago
Abhisek Mohanty
Mar 30, 2015

What about this !!!!!!!!!!!!!!!!

Coolest solution ever!

Swapnil Das - 6 years, 1 month ago
Marcus Laughman
Dec 13, 2016

Solution to geometric series

a/(1-r)

a = 1

r = 1/4

I used this too! Just finished calc 2 so this was the first thing to come to mind!

Jacob Jastrzebski - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...