Brilliant isn't a waste of time!

Find a two digit number such that-

Sum of both the digits is 6

Product of both the digits minus the first digit is 6

The second digit upon the first digit plus the second digit is 6


The answer is 24.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aareyan Manzoor
Jan 2, 2015

let the number be 10 n + y n , y 9 10n+y\longrightarrow n,y\le 9 we get { n + y = 6 n y n = 6 y n + y = 6 n y + y = 6 n \begin{cases} n+y=6\\ ny-n=6\\ \dfrac{y}{n}+y=6 \longrightarrow ny+y=6n\\ \end{cases} adding the first 2 we get { n y + y = 12 n y + y = 6 n n = 2 y = 4 \begin{cases} ny+y=12\\ ny+y=6n\\ n=2\\y=4 \end{cases} and 10 n + y = 20 + 4 = 24 \therefore 10n+y=20+4=\boxed{24}

Brock Brown
Jan 2, 2015

Whee.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
def goal(x):
    s = str(x)
    a = int(s[0]) + int(s[1])
    if a != 6:
        return False
    b = int(s[0]) * int(s[1]) - int(s[0])
    if b != 6:
        return False
    c = float(s[1])/int(s[0])+int(s[1])
    if c == 6:
        return True
for i in xrange(10,100):
    if goal(i):
        print "Answer:", i
        break

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...