Log

Algebra Level 5

2 log x a + log a x a + 3 log b a = 0 2\log_x a + \log_{ax} a + 3\log_b a = 0

For a > 0 a>0 and b = a 2 x b=a^2 x , solve the equation above.

If the solutions can be expressed as a c a^c and a d a^d , and c + d c + d can be expressed as e f -\dfrac ef for coprime positive integers e e and f f , evaluate e f e-f .

This is part of the set My Problems and THRILLER


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 19, 2015

2 log x a + log a x a + log b a = 0 b = a 2 x 2 log a a log a x + log a a log a ( a x ) + 3 log a a log a ( a 2 x ) = 0 2 log a x + 1 1 + log a x + 3 2 + log a x = 0 Let y = log a x 2 ( 1 + y ) ( 2 + y ) + y ( 2 + y ) + 3 y ( 1 + y ) = 0 2 y 2 + 6 y + 4 + y 2 + 2 y + 3 y 2 + 3 y = 0 6 y 2 + 11 y + 4 = 0 ( 2 y + 1 ) ( 3 y + 4 ) = 0 log a x = { 1 2 4 3 x = { a 1 2 a 4 3 \begin{aligned} 2\log_x a + \log_ax a + \log_{\color{#3D99F6}{b}} a & = 0 \quad \quad \small \color{#3D99F6}{b = a^2x} \\ \frac{2\log_a a}{\log_a x} + \frac{\log_a a}{\log_a (ax)} + \frac{3\log_a a}{\log_a (a^2x)} & = 0 \\ \frac{2}{\color{#3D99F6}{\log_a x}} + \frac{1}{1 + \color{#3D99F6}{\log_a x}} + \frac{3}{2 + \color{#3D99F6}{\log_a x}} & = 0 \quad \quad \small \color{#3D99F6}{\text{Let } y = \log_a x} \\ 2(1+y)(2+y) + y(2+y) + 3y(1+y) & = 0 \\ 2y^2+6y+4 + y^2+2y + 3y^2+3y & = 0 \\ 6y^2+11y+4 & = 0 \\ (2y+1)(3y+4) & = 0 \\ \Rightarrow \log_a x & = \begin{cases} - \frac{1}{2} \\ - \frac{4}{3} \end{cases} \quad \Rightarrow x = \begin{cases} a^{- \frac{1}{2}} \\ a^{- \frac{4}{3}} \end{cases} \end{aligned}

c + d = 1 2 4 3 = 11 6 e f = = 11 6 = 5 \Rightarrow c + d = -\frac{1}{2} - \frac{4}{3} = - \frac{11}{6} \quad \Rightarrow e-f = = 11-6 = \boxed{5}

Exactly same way sir! Upvoted

Department 8 - 5 years, 7 months ago

Log in to reply

same approach!

Prince Loomba - 5 years, 1 month ago

Same way sir

abhishekrocks sahoo - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...