Brilliant Secondary School

There are 731 students in first secondary in Brilliant Secondary School. Is it possible to prove mathematically that there are at least three students who have the same birthday?

Assume that they are born in non-leap years.

impossible possible

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mohd Sasa
Apr 29, 2015

Let you know the first step. Divide the students into three groups as followed: 365, 365, 1. You know why? Tell you soon.

Moderator note:

You should clarify whether these students are born in a leap year or not. What you've used is known as Pigeonhole Principle.

How about leap year?

S. Islam - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...