Brilliant Series!

Algebra Level 3

3 ( n 0 ) 8 ( n 1 ) + 13 ( n 2 ) 18 ( n 3 ) + ± ( 3 + 5 n ) ( n n ) 3 \dbinom{n}{0} - 8\dbinom{n}{1}+13 \dbinom{n}{2} - 18 \dbinom{n}{3} + \ldots \pm (3+5n) \dbinom {n}{n}

What is the value of the summation above for positive integer n 2 n \geq 2 ?

2 n 2^n π \pi 3 n 3^n 1 1729 0 5 n 5^n e e

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 16, 2015

Consider f n ( x ) = 3 ( 1 x ) n + 5 d d x ( 1 x ) n f_n(x) = 3(1-x)^n + 5\dfrac {d} {dx} (1-x)^n

f n ( x ) = 3 [ ( n 0 ) ( n 1 ) x + ( n 2 ) x 2 . . . ( 1 ) n ( n n ) x n ] + 5 d d x [ ( n 0 ) ( n 1 ) x + ( n 2 ) x 2 . . . ( 1 ) n ( n n ) x n ] = 3 [ ( n 0 ) ( n 1 ) x + ( n 2 ) x 2 . . . ( 1 ) n ( n n ) x n ] + 5 [ ( n 1 ) + 2 ( n 2 ) x 3 ( n 3 ) x 2 . . . ( 1 ) n n ( n n ) x n 1 ] = 3 ( n 0 ) ( 3 x + 5 ) ( n 1 ) + ( 3 x 2 + 10 x ) ( n 2 ) ( 3 x 3 + 15 x 2 ) ( n 3 ) + . . . ( 1 ) n ( 3 x n + 5 n x n 1 ) ( n n ) \begin{aligned} f_n(x) & = 3 \left[ \begin{pmatrix} n \\ 0 \end{pmatrix} - \begin{pmatrix} n \\ 1 \end{pmatrix} x + \begin{pmatrix} n \\ 2 \end{pmatrix} x^2-...(-1)^n \begin{pmatrix} n \\ n \end{pmatrix} x^n \right] \\ & \quad + 5 \dfrac {d}{dx} \left[ \begin{pmatrix} n \\ 0 \end{pmatrix} - \begin{pmatrix} n \\ 1 \end{pmatrix} x + \begin{pmatrix} n \\ 2 \end{pmatrix} x^2-...(-1)^n \begin{pmatrix} n \\ n \end{pmatrix} x^n \right] \\ & = 3 \left[ \begin{pmatrix} n \\ 0 \end{pmatrix} - \begin{pmatrix} n \\ 1 \end{pmatrix} x + \begin{pmatrix} n \\ 2 \end{pmatrix} x^2-...(-1)^n \begin{pmatrix} n \\ n \end{pmatrix} x^n \right] \\ & \quad + 5 \left[ -\begin{pmatrix} n \\ 1 \end{pmatrix} + 2\begin{pmatrix} n \\ 2 \end{pmatrix} x - 3\begin{pmatrix} n \\ 3 \end{pmatrix} x^2-...(-1)^n n \begin{pmatrix} n \\ n \end{pmatrix} x^{n-1} \right] \\ & = 3 \begin{pmatrix} n \\ 0 \end{pmatrix} - (3x+5) \begin{pmatrix} n \\ 1 \end{pmatrix} + (3x^2+10x) \begin{pmatrix} n \\ 2 \end{pmatrix} \\ & \quad -(3x^3+15x^2) \begin{pmatrix} n \\ 3 \end{pmatrix} +...(-1)^n(3x^n+5nx^{n-1}) \begin{pmatrix} n \\ n \end{pmatrix} \end{aligned}

We note that:

f n ( 1 ) = 3 ( n 0 ) 8 ( n 1 ) + 13 ( n 2 ) 18 ( n 3 ) + . . . ± ( 3 + 5 n ) ( n n ) = = 3 ( 1 1 ) n + 5 d d x ( 1 1 ) n = 0 \begin{aligned} f_n(1) & = 3 \begin{pmatrix} n \\ 0 \end{pmatrix} -8 \begin{pmatrix} n \\ 1 \end{pmatrix} + 13 \begin{pmatrix} n \\ 2 \end{pmatrix} -18 \begin{pmatrix} n \\ 3 \end{pmatrix} +...\pm(3+5n) \begin{pmatrix} n \\ n \end{pmatrix} \\ & = = 3(1-1)^n + 5\dfrac {d} {dx} (1-1)^n = \boxed{0} \end{aligned}

Moderator note:

Superb!

JEE Style : Put n=2 and answer comes out to be 0.

¨ \ddot \smile

Sandeep Bhardwaj - 6 years, 1 month ago

Log in to reply

Did exact same

Rushikesh Joshi - 6 years, 1 month ago

It is zero for all n. I have, in fact, tried for n=2 to 10 with a spreadsheet. All turn out to be zero.

Chew-Seong Cheong - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...