Triangle

Geometry Level 4

See the picture above. It is known A B = 3 cm \overrightarrow{AB}=3\text{ cm} , A C = 30 3 cm \overrightarrow{AC}=\dfrac{\sqrt{30}}{3}\text{ cm} , A D = 4 cm \overrightarrow{AD}=4\text{ cm} , and B C = 2 cm \overrightarrow{BC}=2\text{ cm} . If B A D = α \angle BAD=\alpha , then sin α = p q . \sin\alpha=\frac{\sqrt{p}}{q}. Calculate p q \,p-q .


The answer is 431.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Tunk-Fey Ariawan
Mar 30, 2014

See the picture above. First, we calculate m m by using Stewart's theorem : b 2 m + c 2 n = a ( d 2 + m n ) . b^2m+c^2n=a(d^2+mn). We obtain m = 4 cm m=4\text{ cm} , then using cosine formula yields cos α = b 2 + c 2 a 2 2 b c = 11 24 . \cos\alpha=\frac{b^2+c^2-a^2}{2bc}=-\frac{11}{24}. Therefore, using trigonometric identity sin 2 α + cos 2 α = 1 , \sin^2\alpha+\cos^2\alpha=1, we obtain sin α = 1 cos 2 α = 455 24 . \sin\alpha=\sqrt{1-\cos^2\alpha}=\frac{\sqrt{455}}{24}. Thus, p q = 455 24 = 431 p-q=455-24=\boxed{\color{#3D99F6}{431}} .


# Q . E . D . # \text{\# }\mathbb{Q.E.D.}\text{ \#}

very good...

manish bhargao - 7 years, 2 months ago

I used Heron's formula to find the area of the triangle and then used A r e a = 1 2 b c sin ( A ) Area=\frac{1}{2}bc\text{sin} (A) to work out sin α \sin{\alpha} of the triangle.

Mark Kong - 7 years ago

Log in to reply

Can you please elaborate ? Since BD is not known I would like to understand how you used Heron's formula.

Niranjan Khanderia - 4 years, 10 months ago

A p p l y i n g S i n a n d C o s R u l e s a n d S i n 2 A + C o s 2 A = 1 t h e f o l l o w i n g a n g l e s a r e f o u n d . I n Δ A B C , C o s B = 2 2 + 3 2 10 3 2 2 3 = 29 36 . S i n B = 1 36 3 6 2 2 9 2 = 455 36 Applying \ Sin\ and\ Cos\ Rules\ and\ Sin^2A+Cos^2A=1\ the\ following\ angles\ are\ found.\\ In\ \Delta ABC,\\ CosB=\dfrac{2^2+3^2-\frac{10} 3}{2*2*3}=\dfrac{29}{36}.\ \ \ \implies\ SinB=\frac 1 {36}*\sqrt{36^2-29^2}=\dfrac{\sqrt{455}}{36}\\ I n Δ A B D , S i n D = S i n B A B A D = 455 36 3 4 = 455 48 C o s D = 1 48 4 8 2 455 = 43 48 S i n α = S i n ( B + D ) = S i n B C o s D + C o s B S i n D = 455 36 43 48 + 29 36 455 48 = 455 ( 43 + 29 ) 36 48 = 455 72 36 48 = 455 24 = p q p q = 455 24 = 431. In\ \Delta ABD,\ \ \\ SinD=SinB*\dfrac{AB}{AD}=\dfrac{\sqrt{455}}{36}*\dfrac 3 4=\dfrac{\sqrt{455}}{48} \ \ \ \implies\ CosD=\frac 1 {48}*\sqrt{48^2-455}=\dfrac{43}{48}\\ \therefore\ Sin\alpha=Sin(B+D)=SinB*CosD+CosB*SinD\\ =\dfrac{\sqrt{455}}{36}*\dfrac{43}{48}+ \dfrac{29}{36}* \dfrac{\sqrt{455}}{48}\\ =\dfrac{\sqrt{455} *(43+29)}{36*48}=\dfrac{\sqrt{455} *72}{36*48}=\dfrac{\sqrt{455}}{24}=\dfrac{\sqrt{p}}{q} \\ p-q=455-24=431.

I manually solved the angles

Vishal Sharma
Apr 1, 2014

Use cosine rule for triangle ABC and find angle B then use again cosine rule for triangle ABD to find the length BD. Once more use cosine rule to find angle 'alpha'.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...