BRILLIAthon 2 2 (Problem 1 1 )

Algebra Level pending

In the equation:

A A A + A A = B , B B C , D E D , B E E , B B B , B B E A^{AA} + AA = B,BBC,DED,BEE,BBB,BBE

the letters A , B , C , D , E A,B,C,D,E represent different base 10 10 digits (so that the right-hand side is a 16 16 -digit number and A A AA is a 2 2 -digit number).

Given that C = 9 C = 9 , find the sum of the values of A , B , D , E A, B, D, E

Note: The original question is to find the values of A , B , D , E A,B,D,E , so find the values first then perform the sum.

Source: UKMT BMO 2020 2020 Round 1 1 , Section A A , Q 4 4


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sathvik Acharya
Jan 13, 2021

A A A + A A = B , B B 9 , D E D , B E E , B B B , B B E A^{\overline{AA}}+\overline{AA}=\overline{B,BB9,DED,BEE,BBB,BBE} 1 0 16 > A A A + A A > 1 0 15 \implies 10^{16}>A^{\overline{AA}}+\overline{AA}>10^{15} Claim 1: A = 3 \;A=3

Proof: \;\;\; If A 2 A\le 2 , we have, A A A + A A 2 22 + 22 < ( 2 9 ) 3 < ( 1 0 3 ) 3 = 1 0 9 A^{\overline{AA}}+\overline{AA}\le 2^{22}+22<(2^{9})^3<(10^3)^3=10^9 which is a contradiction. ( A A A + A A A^{\overline{AA}}+\overline{AA} is too small)

If A 4 A\ge 4 , we have, A A A + A A 4 44 + 44 > ( 2 2 ) 44 > ( 2 10 ) 8 > ( 1 0 3 ) 8 = 1 0 24 A^{\overline{AA}}+\overline{AA}\ge 4^{44}+44>(2^2)^{44}>(2^{10})^8>(10^3)^8=10^{24} which is again a contradiction. ( A A A + A A A^{\overline{AA}}+\overline{AA} is too large)

Therefore, the only possibility is A = 3 \boxed{A=3}


3 33 + 33 = B , B B 9 , D E D , B E E , B B B , B B E 3^{33}+33=\overline{B,BB9,DED,BEE,BBB,BBE} Claim 2: B = 5 \;B=5 and E = 6 E=6

Proof: \;\;\; Since, the last two digits of 3 33 + 33 3^{33}+33 is B E \overline{BE} , 3 33 3 ( ( 3 8 ) 2 ) 2 3 ( ( 61 ) 2 ) 2 3 2 1 2 3 41 23 ( m o d 100 ) 3^{33}\equiv 3\cdot ((3^8)^2)^2\equiv 3\cdot ((61)^2)^2\equiv 3\cdot 21^2\equiv 3\cdot 41\equiv 23 \pmod{100} 3 33 + 33 56 ( m o d 100 ) \implies 3^{33}+33\equiv 56 \pmod{100} Therefore, the only possibility is B = 5 \boxed{B=5} and E = 6 \boxed{E=6}


3 33 + 33 = 5 , 559 , D 6 D , 566 , 555 , 556 3^{33}+33=\overline{5,559,D6D,566,555,556} Claim 3: D = 0 \;D=0

Proof: \;\;\; Since 3 3 divides 3 33 + 33 3^{33}+33 , it must also divide the sum of the digits of 5 , 559 , D 6 D , 566 , 555 , 556 \overline{5,559,D6D,566,555,556} 5 9 + 9 1 + 6 4 + D 2 2 D 0 ( m o d 3 ) \implies 5\cdot 9+9\cdot 1+6\cdot 4+D\cdot 2\equiv 2D \equiv 0\pmod{3} So, 3 3 must divide D D { 0 , 3 , 6 , 9 } D\implies D\in \{0,3,6,9\} . Since A , B , C , D A,B,C,D and E E are all distinct digits, the only possibility is D = 0 \boxed{D=0} .


3 33 + 33 = 5 , 559 , 060 , 566 , 555 , 556 3^{33}+33=5,559,060,566,555,556 Therefore, A + B + D + E = 14 A+B+D+E=\boxed{14}

BRILLIAthon 2 2

Yajat Shamji - 4 months, 4 weeks ago

Nice solution, @Sathvik Acharya

Yajat Shamji - 4 months, 3 weeks ago

Log in to reply

Thanks. Enjoyed the problem a lot :)

Sathvik Acharya - 4 months, 3 weeks ago

Log in to reply

No problem! If you want, the link for BRILLIAthon 2 2 is above, you can join the competition!

Clearly, you will do well!

:)!

Yajat Shamji - 4 months, 3 weeks ago
Yajat Shamji
Jan 13, 2021

There is no written solution, however, here's the link to a video solution:

UKMT BMO 2021 2021 Solutions

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...