Bringing A whole new level

For every positive integer g g there is a unique factorial base expansion ( g 1 , g 2 , g 3 , , g m ) (g_1,g_2,g_3,\ldots,g_m) , meaning that

g = 1 ! g 1 + 2 ! g 2 + 3 ! g 3 + + m ! g m g=1!\cdot g_1+2!\cdot g_2+3!\cdot g_3+\cdots+m!\cdot g_m , where each \text{where each} g i g_i is an integer, 0 g i i 0\le g_i\le i , and 0 < g m 0<g_m .

Given that ( g 1 , g 2 , g 3 , , g j ) (g_1,g_2,g_3,\ldots,g_j) is the factorial base expansion of 16 ! 32 ! + 48 ! 64 ! + + 1968 ! 1984 ! + 2000 ! 16!-32!+48!-64!+\cdots+1968!-1984!+2000! , find the value of g 1 g 2 + g 3 g 4 + + ( 1 ) j + 1 g j g_1-g_2+g_3-g_4+\cdots+(-1)^{j+1}g_j .


The answer is 495.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Write the number N = ( 2000 ! 1984 ! ) + ( 1968 ! 1952 ! ) + + ( 48 ! 32 ! ) + 16 ! . N = (2000! - 1984!) + (1968! - 1952!) + \cdots + (48! - 32!) + 16!. It is well known that n ! 1 = k = 1 n 1 k k ! , n! - 1 = \sum_{k=1}^{n-1} k \cdot k!, so that n ! m ! = k = 1 n 1 k k ! k = 1 m 1 k k ! = k = m n 1 k k ! . n! - m! = \sum_{k=1}^{n-1} k \cdot k! - \sum_{k=1}^{m-1} k \cdot k! = \sum_{k = m}^{n-1} k\cdot k!. Thus we have N = ( 1999 1999 ! + + 1984 1984 ! ) + ( 1967 1967 ! + + 1952 1952 ! ) + + ( 47 47 ! + 32 32 ! ) + 16 ! N = (1999\cdot 1999! + \cdots + 1984\cdot 1984!) + (1967\cdot 1967! + \cdots + 1952\cdot 1952!) \\ + \cdots + (47\cdot 47! + \cdots 32\cdot 32!) + 16! In other words, g i = { 1 i = 16 i i 0 , 15 mod 32 0 otherwise g_i = \begin{cases} 1 & i = 16 \\ i & i \equiv 0, \dots 15\ \text{mod}\ 32 \\ 0 & \text{otherwise} \end{cases} Now to do the final calculation. Note that 47 46 + 45 44 + 32 = ( 47 46 ) + + ( 33 32 ) = 8 1 = 8 ; 47 - 46 + 45 - 44 +- \cdots - 32 = (47-46)+\cdots+(33-32) = 8\cdot 1 = 8; There are 1984 / 32 = 62 1984/32 = 62 of these runs of 16 non-zero values, so that the final answer is 62 8 1 = 495 . 62\cdot 8 - 1 = \boxed{495}. (The final 1 is the term g 16 g_{16} .)

That is not the number under consideration in the problem.

Ivan Koswara - 5 years, 6 months ago

Log in to reply

You're right-- Thanks. I fixed it now. :)

Arjen Vreugdenhil - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...