Brutomolecule: hacking biological defences (Part II)

Asymptotic growth of Breach-time under larger keys. \underline{\text{Asymptotic growth of Breach-time under larger keys.}}

Recall from Part I that p p denotes the distribution of letters in Σ \Sigma , according to which the Brutomolecule produces its sequence of letters. Given a key s Σ < ω s\in\Sigma^{<\omega} , we defined T s T_{s} (which we shall here denote T s ; p T_{s;~p} ) to be the successful breaching time for the Brutomolecule.

We extend the scenario of Part I as follows. Suppose all life-forms in a solar system deploy keys stemming from a universal signature known only to them. This signature is a very long (idealised: infinite) sequence x Σ ω x\in\Sigma^{\omega} . In the course of evolution in a solar system the biological security of cells gets harder. The keys are all of the form s = x n s=x\vert n , where n n steadily grows (say from life-form to life form). If the Brutomolecule persists with its blind attack, its corresponding average breaching times, E [ T x n ; p ] \mathbb{E}[T_{x|n;~p}] will steadily grow. In this problem we’re going to investing this growth.

Task 1. Suppose p p is non-trivial , that is, 0 < p ( α ) < 1 0<p(\alpha)<1 for all α Σ \alpha\in\Sigma . Now, it can be shown that E [ T x n ; p ] \mathbb{E}[T_{x|n;~p}] does not grow linearly in n n . Show that in fact the sequence E [ T x n ; p ] \mathbb{E}[T_{x|n;~p}] exhibits a form of exponential growth.

Task 2. Under what condition (necessary and sufficient) does h ( x ; p ) : = lim n log ( E [ T x n ; p ] ) n h(x;p):=\lim_{n\rightarrow\infty}\frac{\log(\mathbb{E}[T_{x|n;~p}])}{n} converge under every choice of p p ? Determine this expression explicitly!

Task 3. Consider the alphabet Σ = { 0 , 1 } \Sigma=\{0,1\} . For which of the following sequences is it not the case that h ( x ; p ) h(x;~p) exists for every p p ?

  1. x = 001001001001001 x=001001001001001\ldots ;
  2. x = 001 010 100 001 010 010 100 x=001\,010\,100\,001\,010\,010\,100\ldots , where blocks of the form 001 , 010 , 100 001,010,100 are randomly strewn together;
  3. x = 0 n 0 1 n 1 0 n 2 1 n 3 x=0^{n_{0}}1^{n_{1}}0^{n_{2}}1^{n_{3}}\ldots , where n i { 1 , 2 , } n_{i}\in\{1,2,\ldots\} satisfying j < i n j n i 0 \dfrac{\sum_{j<i}n_{j}}{n_{i}}\longrightarrow 0 ;
  4. a generic randomly chosen x x in Σ ω \Sigma^{\omega} , where the letters in x x are successively chosen independently via a distribution μ : Σ [ 0 , 1 ] \mu:\Sigma\longrightarrow[0,1]

Please note. This is mathematics, so log \log is to base e e and not base 10 10 . The problem continues in Part III .

none: h ( x ) h(x) exists in all cases. 3 4 1, 3. 2, 4. 2 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

R Mathe
Jun 3, 2018

The expression for E [ T s ; p ] \mathbb{E}[T_{s;~p}] , s Σ < ω s\in\Sigma^{<\omega} as per Part I was as follows:

E [ T s ; p ] = n < s p ( s n ) p ( s ) \mathbb{E}[T_{s;~p}] = \dfrac{\sum_{n<|s|}p(s\vert n)}{p(s)}

where p ( t ) = i < t p ( t ( i ) ) p(t)=\prod_{i<|t|}p(t(i)) for all i < t i<|t| and t Σ < ω t\in\Sigma^{<\omega} . From this one has

1 p ( s ) E [ T s ; p ] s p ( s ) \dfrac{1}{p(s)}\leq\mathbb{E}[T_{s;~p}]\leq\dfrac{|s|}{p(s)}

Taking logarithms yields

log ( E [ T s ; p ] ) s 1 s i < s log ( p ( s ( i ) ) ) log ( s ) s \left|\dfrac{\log(\mathbb{E}[T_{s;~p}])}{|s|}-\frac{1}{|s|}\sum_{i<|s|}-\log(p(s(i)))\right| \leq \frac{\log(|s|)}{|s|}

Setting p i : = p ( x ( i ) ) p_{i}:=p(x(i)) for all i ω i\in\omega for the signature x Σ ω x\in\Sigma^{\omega} yields the simpler expression

log ( E [ T x n ; p ] ) n 1 n i < n log ( p i ) log ( n ) n \left|\dfrac{\log(\mathbb{E}[T_{x\vert n;~p}])}{n}-\frac{1}{n}\sum_{i<n}-\log(p_{i})\right| \leq \frac{\log(n)}{n}

Since log ( n ) n 0 \frac{\log(n)}{n}\longrightarrow 0 for n n\longrightarrow\infty , we have that the asymptotic behaviour of log ( E [ T x n ] ) n \dfrac{\log(\mathbb{E}[T_{x\vert n}])}{n} is equivalent to the asymptotic behaviour of the sequence of averages 1 n i < n log ( p i ) -\frac{1}{n}\sum_{i<n}\log(p_{i}) . Since each p i > 0 p_{i}>0 and there are only finitely many values, these averages are bounded.

Hence we have completed Task 1 : the development of E [ T x n ; p ] \mathbb{E}[T_{x\vert n;~p}] is asymptotically bounded between e L min n e^{L_{\min}n} and e L max n e^{L_{\max}n} , where L min = min { log ( p ( α ) ) : α Σ } > 0 L_{\min}=\min\{-\log(p(\alpha)):\alpha\in\Sigma\}>0 , since for non-trivial p p all p ( α ) < 1 p(\alpha)<1 and L max = max { log ( p ( α ) ) : α Σ } < L_{\max}=\max\{-\log(p(\alpha)):\alpha\in\Sigma\}<\infty , since for non-trivial p p all p ( α ) > 0 p(\alpha)>0 .

Towards Task 2 , by the above it is necessary and sufficient to investigate when 1 n i < n log ( p i ) -\frac{1}{n}\sum_{i<n}\log(p_{i}) converges. Reshaping this expression yields

1 n i < n log ( p i ) = α Σ { i < n : x ( i ) = α } n log ( p ( α ) ) = α Σ A α [ 0 , n ) n log ( p ( α ) ) -\frac{1}{n}\sum_{i<n}\log(p_{i}) = -\sum_{\alpha\in\Sigma}\frac{|\{i<n:x(i)=\alpha\}|}{n}\log(p(\alpha)) = -\sum_{\alpha\in\Sigma}\frac{|A_{\alpha}\cap[0,n)|}{n}\log(p(\alpha))

where A α : = { i ω x ( i ) = α } A_{\alpha}:=\{i\in\omega\mid x(i)=\alpha\} . It is thus clear, that a sufficient condition for convergence, is:

( ) (\star)\ldots A α [ 0 , n ) n \frac{|A_{\alpha}\cap[0,n)|}{n} converges for all α Σ \alpha\in\Sigma , that is, the sets A α = { i ω x ( i ) = α } A_{\alpha}=\{i\in\omega\mid x(i)=\alpha\} are sets of asymptotic density , or in other words, each letter has asymptotic frequency in the signature x x .

Under this condition one has convergence to asymptotic densities A α [ 0 , n ) n d ( A α ) \frac{|A_{\alpha}\cap[0,n)|}{n}\longrightarrow d(A_{\alpha}) . The explicit expression for h ( x ; p ) h(x;~p) under this condition is thus given by

h ( x ; p ) = lim n α Σ A α [ 0 , n ) n log ( p ( α ) ) = α Σ lim n A α [ 0 , n ) n log ( p ( α ) ) = α Σ d ( A α ) l o g ( p ( α ) ) h(x;~p)=-\lim_{n\rightarrow\infty}\sum_{\alpha\in\Sigma}\frac{|A_{\alpha}\cap[0,n)|}{n}\log(p(\alpha)) =-\sum_{\alpha\in\Sigma}\lim_{n\rightarrow\infty}\frac{|A_{\alpha}\cap[0,n)|}{n}\cdot\log(p(\alpha)) =-\sum_{\alpha\in\Sigma}d(A_{\alpha})\cdot log(p(\alpha))

Necessary condition. Is condition ( ) (\star) necessary for h ( x ; p ) h(x;~p) to exists for all distributions p p ? In fact, we will show a stronger statement: we will show that the existence of h ( x ; p ) h(x;~p) for all non-trivial distributions p p implies that the A α A_{\alpha} are density sets. Fix any β Σ \beta\in\Sigma . Let p p be a (non-trivial) distribution. Then since for all n > 0 n>0

A β [ 0 , n ) n log ( p ( β ) ) + α Σ { β } 0 log ( p ( α ) ) α Σ A α [ 0 , n ) n log ( p ( α ) ) A β [ 0 , n ) n log ( p ( β ) ) + α Σ { β } 1 log ( p ( α ) ) -\frac{|A_{\beta}\cap[0,n)|}{n}\log(p(\beta))+-\sum_{\alpha\in\Sigma\setminus\{\beta\}}0\cdot\log(p(\alpha)) \leq -\sum_{\alpha\in\Sigma}\frac{|A_{\alpha}\cap[0,n)|}{n}\log(p(\alpha)) \leq -\frac{|A_{\beta}\cap[0,n)|}{n}\log(p(\beta))+-\sum_{\alpha\in\Sigma\setminus\{\beta\}}1\cdot\log(p(\alpha))

and α Σ A α [ 0 , n ) n log ( p ( α ) ) h ( x ; p ) -\sum_{\alpha\in\Sigma}\frac{|A_{\alpha}\cap[0,n)|}{n}\log(p(\alpha))\longrightarrow h(x;~p) , taking the limes inferior of the above upper bound and the limes superior of the lower bound yields

d + ( A β ) log ( p ( β ) ) + 0 h ( x ; p ) d ( A β ) log ( p ( β ) ) + α Σ { β } log ( p ( α ) ) -d^{+}(A_{\beta})\log(p(\beta))+0\leq h(x;p)\leq -d^{-}(A_{\beta})\log(p(\beta))+-\sum_{\alpha\in\Sigma\setminus\{\beta\}}\log(p(\alpha))

where d + ( C ) : = lim sup n C [ 0 , n ) n [ 0 , 1 ] d^{+}(C):=\limsup_{n}\frac{|C\cap[0,n)|}{n}\in[0,1] and d ( C ) : = lim inf n C [ 0 , n ) n [ 0 , 1 ] d^{-}(C):=\liminf_{n}\frac{|C\cap[0,n)|}{n}\in[0,1] for any set C ω C\subseteq\omega . Since L ( ) > 0 L(\cdot)>0 pointwise for non-trivial p p , it follows that

d + ( A β ) d ( A β ) inf p non-trivial α Σ { β } log ( p ( α ) ) log ( p ( β ) ) d^{+}(A_{\beta})-d^{-}(A_{\beta})\leq \inf_{p~\text{non-trivial}}\dfrac{-\sum_{\alpha\in\Sigma\setminus\{\beta\}}\log(p(\alpha))}{-\log(p(\beta))}\\

To show that A β A_{\beta} is a set of density, ie that d ( A β ) = lim n A β [ 0 , n ) n d(A_{\beta})=\lim_{n}\frac{|A_{\beta}\cap[0,n)|}{n} exists, it suffices to show that d + ( A β ) d ( A β ) 0 d^{+}(A_{\beta})-d^{-}(A_{\beta})\leq 0 . To do this, by the above inequality, it suffices to show that α Σ { β } log ( p ( α ) ) log ( p ( β ) ) \frac{\sum_{\alpha\in\Sigma\setminus\{\beta\}}\log(p(\alpha))}{\log(p(\beta))} can be made arbitrarily small for non-trivial distributions p p . This is doable as follows:

  • Let N : = Σ 1 1 N:=|\Sigma|-1\geq 1 . For any q ( 0 , 1 N ] q\in(0,\frac{1}{N}] , setting p ( β ) = q p(\beta)=q and p ( α ) = 1 q N p(\alpha)=\frac{1-q}{N} for α Σ { β } \alpha\in\Sigma\setminus\{\beta\} yields a non-trivial distribution with α Σ { β } log ( p ( α ) ) log ( p ( β ) ) = N log ( 1 q N ) log ( q ) \frac{\sum_{\alpha\in\Sigma\setminus\{\beta\}}\log(p(\alpha))}{\log(p(\beta))}=\frac{N\log(\frac{1-q}{N})}{\log(q)} .
  • Letting q 0 + q\longrightarrow 0^{+} yields N log ( 1 q N ) log ( q ) 0 \frac{N\log(\frac{1-q}{N})}{\log(q)}\longrightarrow 0 .

Thus it follows that inf p non-trivial α Σ { β } log ( p ( α ) ) log ( p ( β ) ) = 0 \inf_{p~\text{non-trivial}}\frac{\sum_{\alpha\in\Sigma\setminus\{\beta\}}\log(p(\alpha))}{\log(p(\beta))}=0 . This completes the proof of the implication: if h ( x ; p ) h(x;~p) exists for all (non-trivial) distributions p p , it is necessary, that all A α A_{\alpha} be sets of density. This completes Task 2.

Towards Task 3 , one may rely on Task 2. Since we only have two letters in our alphabet, it suffices to check if A 1 = { i ω x ( i ) = 1 } A_{1}=\{i\in\omega\mid x(i)=1\} is a set of density. For 1 and 2 this is clear: they are of density 1 / 3 1/3 . For 4 , it holds (via the law of large number or simply ergodic theory), that almost every randomly chosen sequence under in a product probability space n N ( Σ , μ ) \prod_{n\in\mathbb{N}}(\Sigma,\mu) is normal: each digits occurs in a set of density. For 3 , by contrast it is easy to find two subsequences, for which A 1 [ 0 , n ) n 0 \frac{|A_{1}\cap[0,n)|}{n}\longrightarrow 0 and A 1 [ 0 , n ) n 1 \frac{|A_{1}\cap[0,n)|}{n}\longrightarrow 1 respectively. {}^{\color{#D61F06}{\dagger}} Hence 3 is the only case under which h ( x ; p ) h(x;~p) does not converge.


{}^{\color{#D61F06}{\dagger}} Subsequences converging to 0 0 resp. 1 1 : Let

[ m c ] r c l r c l N 0 ( i ) : = k 2 i n k J 0 : = { N 0 ( i ) i N } , and N 1 ( i ) : = k 2 i + 1 n k J 1 : = { N 1 ( i ) i N } . \begin{array}{c}[mc]{rclrcl} N_{0}(i) &:= &\sum_{k\leq 2i}n_{k} \quad &J_{0}&:=&\{N_{0}(i)\mid i\in\mathbb{N}\},~\text{and}\\ N_{1}(i) &:= &\sum_{k\leq 2i+1}n_{k} \quad &J_{1}&:=&\{N_{1}(i)\mid i\in\mathbb{N}\}.\\ \end{array}

Now consider the subsequences ( A 1 [ 0 , n ) n ) n J 0 (\frac{|A_{1}\cap[0,n)|}{n})_{n\in J_{0}} and ( A [ 0 , n ) n ) n J 1 (\frac{|A\cap[0,n)|}{n})_{n\in J_{1}} . By the condition in the problem, it holds that

n i k i n k = 1 1 + 1 n i k < i n k 1 1 + 0 = 1 \dfrac{n_{i}}{\sum_{k\leq i}n_{k}} =\dfrac{1}{1+\frac{1}{n_{i}}\sum_{k<i}n_{k}} \longrightarrow \frac{1}{1+0}=1\\

Appealing to this, one has under the above setup

[ m c ] r c c c c c l A 1 [ 0 , N 0 ( i ) ) N 0 ( i ) = k < i n 2 k + 1 k 2 i n k 1 n 2 i k 2 i n k 1 1 = 0 A 1 [ 0 , N 1 ( i ) ) N 1 ( i ) = k i n 2 k + 1 k 2 i + 1 n k n 2 i + 1 k 2 i + 1 n k 1 \begin{array}{c}[mc]{rcccccl} \frac{|A_{1}\cap[0,N_{0}(i))|}{N_{0}(i)} &= &\frac{\sum_{k<i}n_{2k+1}}{\sum_{k\leq 2i}n_{k}} &\leq &1-\frac{n_{2i}}{\sum_{k\leq 2i}n_{k}} &\longrightarrow &1-1=0\\ \frac{|A_{1}\cap[0,N_{1}(i))|}{N_{1}(i)} &= &\frac{\sum_{k\leq i}n_{2k+1}}{\sum_{k\leq 2i+1}n_{k}} &\geq &\frac{n_{2i+1}}{\sum_{k\leq 2i+1}n_{k}} &\longrightarrow &1\\ \end{array}

It follows that A 1 [ 0 , N 0 ( i ) ) N 0 ( i ) 0 \frac{|A_{1}\cap[0,N_{0}(i))|}{N_{0}(i)}\longrightarrow 0 and A 1 [ 0 , N 1 ( i ) ) N 1 ( i ) 1 \frac{|A_{1}\cap[0,N_{1}(i))|}{N_{1}(i)}\longrightarrow 1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...