Brute Force?

Algebra Level 3

π + π + 1 6 + π + 2 6 + π + 3 6 + π + 4 6 + π + 5 6 + 1 = ? \large \left \lceil \lfloor \pi \rfloor + \left\lfloor \pi + \dfrac{1}{6}\right \rfloor + \left \lfloor \pi + \dfrac{2}{6} \right \rfloor + \left \lfloor \pi + \dfrac{3}{6} \right \rfloor + \left \lfloor \pi + \dfrac{4}{6}\right \rfloor +\left \lfloor \pi + \dfrac{5}{6}\right \rfloor \right \rceil + 1 = \, ?

Notations : \lfloor \cdot \rfloor denotes the floor function and \lceil \cdot \rceil denotes the ceiling function .


Too easy? Try this .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ralph Macarasig
Aug 6, 2016

Using brute force, we know that the approximate value of π \pi is 3.142 3.142 to three decimal places. Then, the approximate value of 5 6 \frac{5}{6} is 0.833 0.833 to 3 decimal places. Hence, the approximate value of π + 5 6 \pi + \frac{5}{6} is 3.975 3.975 which is less than 4 4 . Therefore,

π + π + 1 6 + π + 2 6 + π + 3 6 + π + 4 6 + π + 5 6 + 1 \lceil \lfloor \pi \rfloor + \lfloor \pi + \frac{1}{6}\rfloor + \lfloor \pi + \frac{2}{6}\rfloor +\lfloor \pi + \frac{3}{6}\rfloor + \lfloor \pi + \frac{4}{6}\rfloor + \lfloor \pi + \frac{5}{6}\rfloor \rceil + 1

= 3 + 3 + 3 + 3 + 3 + 3 + 1 = \lceil 3 + 3 + 3 + 3 + 3 + 3\rceil + 1

= 19 = \boxed{19}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...