Bulgaria National Olympiad Problem 1

Algebra Level 5

Find the real number m m such that the equation ( x 2 2 m x 4 ( m 2 + 1 ) ) ( x 2 4 x 2 m ( m 2 + 1 ) ) = 0 (x^2-2mx-4(m^2+1))(x^2-4x-2m(m^2+1))=0 has exactly three different roots.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vishnu C
Apr 4, 2015

L e t a , b b e t h e r o o t s t o t h e f i r s t q u a d r a t i c a n d a , c b e t h e r o o t s t o t h e s e c o n d q u a d r a t i c . a 2 2 m a 4 ( m 2 + 1 ) = 0 a n d a 2 4 a 2 m ( m 2 + 1 ) = 0. a 2 = 2 m 4 ( m 2 + 1 ) 4 2 m ( m 2 + 1 ) 1 2 m 1 4 = 4 ( m 2 + 1 ) ( m 2 4 ) 2 ( m 2 ) a 2 = 2 ( m 2 + 1 ) ( m + 2 ) . a = 1 4 ( m 2 + 1 ) 1 2 m ( m 2 + 1 ) 1 2 m 1 4 = 2 ( m 2 + 1 ) ( m 2 ) 2 ( m 2 ) = m 2 + 1. ( m 2 + 1 ) 2 = 2 ( m 2 + 1 ) ( m + 2 ) m 2 2 m 3 = 0. m = 3 , 1. I f w e p u t m = 1 , w e c a n s e e t h a t a i s r e p e a t e d t w i c e : I n t h e s e c o n d q u a d r a t i c , a = c = 2 f o r m = 1. I f w e p u t m = 3 , w e c a n s e e t h a t a i s r e p e a t e d a s 10 o n l y o n c e i n e a c h q u a d r a t i c a n d b = 4 ; c = 6. m = 3 Let\quad a,b\quad be\quad the\quad roots\quad to\quad the\quad first\\ quadratic\quad and\quad a,c\quad be\quad the\quad roots\quad to\quad \\ the\quad second\quad quadratic.\\ \therefore \quad { a }^{ 2 }-2ma-4({ m }^{ 2 }+1)=0\\ { and\quad a }^{ 2 }-4a-2m({ m }^{ 2 }+1)=0.\quad \\ { a }^{ 2 }=\frac { \begin{vmatrix} -2m & -4({ m }^{ 2 }+1) \\ -4 & -2m({ m }^{ 2 }+1) \end{vmatrix} }{ \begin{vmatrix} 1 & -2m \\ 1 & -4 \end{vmatrix} } =\frac { 4({ m }^{ 2 }+1)({ m }^{ 2 }-4) }{ 2(m-2) } \\ \Rightarrow a^{ 2 }=2({ m }^{ 2 }+1)(m+2).\\ a=\quad -\quad \frac { \begin{vmatrix} 1 & -4({ m }^{ 2 }+1) \\ 1 & -2m({ m }^{ 2 }+1) \end{vmatrix} }{ \begin{vmatrix} 1 & -2m \\ 1 & -4 \end{vmatrix} } =\frac { 2({ m }^{ 2 }+1)(m-2) }{ 2(m-2) } ={ m }^{ 2 }+1.\\ \therefore \quad ({ m }^{ 2 }+1)^{ 2 }=2({ m }^{ 2 }+1)(m+2)\\ \Rightarrow { m }^{ 2 }-2m-3=0.\\ m=3,-1.\quad \\ If\quad we\quad put\quad m=-1,\quad we\quad can\quad see\quad that\quad a\quad is\quad \\ repeated\quad twice:\quad In\quad the\quad second\quad quadratic,\\ a=c=2\quad for\quad m=-1.\quad If\quad we\quad put\quad m=3,\quad we\quad \\ can\quad see\quad that\quad a\quad is\quad repeated\quad as\quad 10\quad only\quad once\\ in\quad each\quad quadratic\quad and\quad b=-4;\quad c=-6.\quad \\ \therefore \quad m=\boxed { 3 } \quad

You should mention the question correctly. Three different root of above equation are also obtained on x=-1. You should mention that both equation must have a common root.

Prakash Chandra Rai - 6 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...