Bulgaria National Olympiad Problem 3

Algebra Level 5

Find the least natural number a a for which the equation cos 2 π ( a x ) 2 cos π ( a x ) + cos 3 π x 2 a cos ( π x 2 a + π 3 ) + 2 = 0 \cos^2\pi(a-x)-2\cos\pi(a-x)+\cos\frac{3\pi x}{2a}\cos(\frac{\pi x}{2a}+\frac{\pi}{3})+2=0 has a real root.


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Trongnhan Khong
Oct 18, 2015

Hi,

Firstly,

cos π ( a x ) 2 2 cos π ( a x ) + cos 3 π x 2 a cos ( π x 2 a + π 3 ) + 2 = 0 [ cos π ( a x ) 1 ] 2 + 1 2 [ cos ( 2 π x a + π 3 ) + cos ( π x a π 3 ) ] + 1 = 0 [ cos π ( a x ) 1 ] 2 [ sin ( π x a + π 6 ) 1 4 ] 2 = ( 5 4 ) 2 { \cos { \pi \left( a-x \right) } }^{ 2 }-2\cos { \pi \left( a-x \right) } +\cos { \frac { 3\pi x }{ 2a } } \cos { \left( \frac { \pi x }{ 2a } +\frac { \pi }{ 3 } \right) } +2=0\\ \Leftrightarrow { \left[ \cos { \pi \left( a-x \right) } -1 \right] }^{ 2 }+\frac { 1 }{ 2 } \left[ \cos { \left( \frac { 2\pi x }{ a } +\frac { \pi }{ 3 } \right) } +\cos { \left( \frac { \pi x }{ a } -\frac { \pi }{ 3 } \right) } \right] +1=0\\ \Leftrightarrow { \left[ \cos { \pi \left( a-x \right) } -1 \right] }^{ 2 }{ -\left[ \sin { \left( \frac { \pi x }{ a } +\frac { \pi }{ 6 } \right) } -\frac { 1 }{ 4 } \right] }^{ 2 }=-{ \left( \frac { 5 }{ 4 } \right) }^{ 2 }

We can write [ X 1 ] 2 [ Y 1 4 ] 2 = ( 5 4 ) 2 { \left[ X-1 \right] }^{ 2 }-{ \left[ Y-\frac { 1 }{ 4 } \right] }^{ 2 }=-{ \left( \frac { 5 }{ 4 } \right) }^{ 2 } where X cos π ( a x ) X\equiv \cos { \pi \left( a-x \right) } and Y sin ( π x a + π 6 ) Y\equiv \sin { \left( \frac { \pi x }{ a } +\frac { \pi }{ 6 } \right) }

Now, there is at least 2 ways to deal with the equation. The first one is to note that

[ X 1 ] 2 = ( Y 3 2 ) ( Y + 1 ) { \left[ X-1 \right] }^{ 2 }=\left( Y-\frac { 3 }{ 2 } \right) \left( Y+1 \right)

L H S 0 LHS\ge 0 , meanwhile R H S 0 RHS\le 0 . Therefore, L H S = R H S L H S = R H S = 0 LHS=RHS\Leftrightarrow LHS=RHS=0

{ X = cos π ( a x ) = 1 Y = sin ( π x a + π 6 ) = 1 { π ( a x ) = k ( 2 π ) ( k Z ) π ( x a + 1 6 ) = π 2 + l ( 2 π ) ( l Z ) ( 5 + 6 l ) a = 6 k 6 a \Leftrightarrow \begin{cases} X=\cos { \pi \left( a-x \right) } =1 \\ Y=\sin { \left( \frac { \pi x }{ a } +\frac { \pi }{ 6 } \right) } =-1 \end{cases}\\ \Leftrightarrow \begin{cases} \pi \left( a-x \right) =k\left( 2\pi \right) \quad (k\in Z) \\ \pi \left( \frac { x }{ a } +\frac { 1 }{ 6 } \right) =-\frac { \pi }{ 2 } +l\left( 2\pi \right) \quad (l\in Z) \end{cases}\\ \Rightarrow \left( 5+6l \right) a=6k\\ \Rightarrow 6\mid a

The second method, divide the both hand sides by ( 5 4 ) 2 { \left( \frac { 5 }{ 4 } \right) }^{ 2 } , it now represents a hyperbola. At the same time, don't forger that 1 X , Y 1 -1\le X,Y\le 1 or ( X , Y ) \left( X,Y \right) lies on the square whose center is at the origin and side length is 2 2 . After some investigation, it turns out that the hyperbola intersects the square at just one point, ( 1 , 1 ) a v e r t e x o f t h e s q u a r e a v e r t e x o f t h e h y p e r b o l a \left( 1,-1 \right) \equiv a\quad vertex\quad of\quad the\quad square\equiv a\quad vertex\quad of\quad the\quad hyperbola .

On ti-83 PLUS calculator plot
cos 2 π ( a x ) 2 cos π ( a x ) + cos 3 π x 2 a cos ( π x 2 a + π 3 ) + 2 = 0 S e t X m i n = 500 , X m a x = 500 , Y m i n , 1 E 4 Y m a x = 0.01. s e t a = 0 E N T E R . 1 + a S T R a : Press GRAPH CLEAR ENTER. Comtinue pressing these keys in that order, and get graph ploted for a = 1 , 2 , . . . , 6 w h e n Y 0.01. S o a = 6 \cos^2\pi(a-x)-2\cos\pi(a-x)+\cos\frac{3\pi x}{2a}\cos(\frac{\pi x}{2a}+\frac{\pi}{3})+2=0 \\Set~X_{min}=-500, ~~X_{max}=500,~~Y_{min},-1E-4~~Y_{max}=0.01.\\set~~ a=0 ~ENTER. ~~~1+a ~STR ~a:\\\text{Press GRAPH CLEAR ENTER. Comtinue pressing these keys in }\\ \text {that order, and get graph ploted for}~a=1, ~2,~...~,~6~when~Y\approx 0.01.\\So ~a=~~\huge \color{#D61F06}{6}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...