Busy Integral

Calculus Level 4

Evaluate

0 π d x 5 + 3 cos 2 x \large \displaystyle \int_{0}^{\pi}\dfrac{dx}{5+3\cos^2x}

If your answer comes in the form of π a b \dfrac{\pi}{a\sqrt{b}} , where a a and b b are positive integers with b b square-free, find a + b a+b .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jan 15, 2016

Taking sin 2 x common from the denominator \text{Taking}\space \sin^2x \space \text{common from the denominator} and using 1 sin 2 x = csc 2 x , c s c 2 x = 1 + c o t 2 x \text{and using}\color{#3D99F6}{\dfrac{1}{\sin^2x}=\csc^2x, csc^2x=1+cot^2x} I = 0 π d x 5 + 3 cos 2 x = 0 π ( csc 2 x ) dx 5 csc 2 x + 3 cot 2 x I= \displaystyle \int_{0}^{\pi}\dfrac{dx}{5+3\cos^2x}=\displaystyle \int_{0}^{\pi}\dfrac{(\csc^2 x) \text{dx}}{5\csc^2x+3\cot^2x} = 0 π ( csc 2 x ) dx 5 + 8 c o t 2 x =\displaystyle \int_{0}^{\pi}\dfrac{(\csc^2x) \text{dx}}{5+8cot^2x} Notice d(cotx)= c s c 2 x -csc^2x and using dx x 2 + a 2 = 1 a t a n 1 ( x a ) \color{#3D99F6}{\displaystyle \int \frac{\text{dx}}{x^2+a^2}=\frac{1}{a}tan^{-1}(\frac{x}{a})} I = 1 2 10 [ t a n 1 ( 2 2 c o t x 5 ) ] 0 π I=\dfrac{-1}{2\sqrt{10}}[ tan^{-1} (\frac{2\sqrt{2}cotx}{\sqrt{5}})]^\pi_0 = 1 2 10 ( π 2 π 2 ) =\color{magenta}{\frac{-1}{2\sqrt{10}}(-\frac{\pi}{2}-\frac{\pi}{2})} = π 2 10 =\color{limegreen}{\frac{\pi}{2\sqrt{10}}} a=2,b=10 and a+b= 12 \Large 12

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...