But differentiating three times might be too long...

Calculus Level 3

If d 3 d x 3 ( 3 x 2 + 12 x + 11 x 3 + 6 x 2 + 11 x + 6 ) x = 0 = a b \left. \frac{ \text{d}^3 }{ \text{d}x^3 } \left( \frac{ 3x^2 + 12x + 11 }{ x^3 + 6x^2 + 11x + 6 } \right) \right\rvert_{x=0} = -\frac{a}{b} where a a and b b are coprime positive integers, find the value of a + b a+b .


The answer is 1609.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 29, 2020

y = 3 x 2 + 12 x + 11 x 3 + 6 x 2 + 11 x + 6 = 3 ( x + 2 ) 2 1 ( x + 1 ) ( x + 2 ) ( x + 3 Let u = x + 2 d u d x = 1 = 3 u 2 1 ( u 1 ) u ( u + 1 ) = 3 ( u 2 1 ) + 2 u ( u 2 1 ) = 3 u + 2 ( u 1 ) u ( u + 1 ) = 3 u + 1 u 1 2 u + 1 u + 1 = 1 u 1 + 1 u + 1 u + 1 d y d x = d y d u d u d x 1 = 1 ( u 1 ) 2 1 u 2 1 ( u + 1 ) 2 d 2 y d x 2 = d d u ( d y d x ) d u d x 1 = 2 ( u 1 ) 3 + 2 u 3 + 2 ( u + 1 ) 3 d 3 y d x 3 = d d u ( d 2 y d x 2 ) d u d x 1 = 6 ( u 1 ) 4 6 u 4 6 ( u + 1 ) 4 d 3 y d x 3 x = 0 = d 3 y d u 3 u = 2 = 6 1 4 6 2 4 6 3 4 = 1393 216 \begin{aligned} y & = \frac {3x^2+12x+11}{x^3+6x^2+11x+6} = \frac {3(x+2)^2 - 1}{(x+1)(x+2)(x+3} & \small \blue{\text{Let } u = x+2 \implies \frac {du}{dx} = 1} \\ & = \frac {3u^2-1}{(u-1)u(u+1)} = \frac {3(u^2-1)+2}{u(u^2-1)} \\ & = \frac 3u + \frac 2{(u-1)u(u+1)} = \frac 3u + \frac 1{u-1} - \frac 2u + \frac 1{u+1} \\ & = \frac 1{u-1} + \frac 1u + \frac 1{u+1} \\ \frac {dy}{dx} & = \frac {dy}{du}\cdot \cancel{\dfrac {du}{dx}}^1 = - \frac 1{(u-1)^2} - \frac 1{u^2} - \frac 1{(u+1)^2} \\ \frac {d^2y}{dx^2} & = \frac d{du} \left(\frac {dy}{dx}\right)\cancel{\dfrac {du}{dx}}^1 = \frac 2{(u-1)^3} + \frac 2{u^3} + \frac 2{(u+1)^3} \\ \frac {d^3y}{dx^3} & = \frac d{du} \left(\frac {d^2y}{dx^2}\right)\cancel{\dfrac {du}{dx}}^1 = -\frac 6{(u-1)^4} - \frac 6{u^4} - \frac 6{(u+1)^4} \\ \frac {d^3y}{dx^3}\bigg|_{x=0} & = \frac {d^3y}{du^3}\bigg|_{u=2} = -\frac 6{1^4} - \frac 6{2^4} - \frac 6{3^4} = - \frac {1393}{216} \end{aligned}

Therefore, a + b = 1393 + 216 = 1609 a+b = 1393+216 = \boxed{1609} .

Ron Gallagher
Jun 1, 2020

I think we can make the computation slightly easier by recognizing that we can set y(x) = f'(x) / f(x), where y(x) is the function being differentiated and f(x) = x^3 + 6 x^2 + 11 x + 6. Then,

y(x)*f(x) = f'(x).

Now, apply the product rule 3 times and note that f(0) = 6, f'(0) = 11, f''(0) = 12, f'''(0) = 6, and all higher-order derivatives vanish. It's still a long computation, though.

Jaydee Lucero
May 29, 2020

We have x 3 + 6 x 2 + 11 x + 6 = ( x + 1 ) ( x + 2 ) ( x + 3 ) x^3 + 6x^2 + 11x + 6 = (x + 1)(x + 2)(x + 3) so we see that it is easier to solve this problem if we do partial fraction decomposition first. We have 3 x 2 + 12 x + 11 x 3 + 6 x 2 + 11 x + 6 = A x + 1 + B x + 2 + C x + 3 \frac{3x^2 + 12x + 11}{x^3 + 6x^2 + 11x + 6} = \frac{A}{x + 1} + \frac{B}{x + 2} + \frac{C}{x + 3} or, multiplying both sides by ( x + 1 ) ( x + 2 ) ( x + 3 ) (x + 1)(x + 2)(x + 3) , 3 x 2 + 12 x + 11 = A ( x + 2 ) ( x + 3 ) + B ( x + 1 ) ( x + 3 ) + C ( x + 1 ) ( x + 2 ) 3x^2 + 12x + 11 = A(x + 2)(x + 3) + B(x + 1)(x + 3) + C(x + 1)(x + 2) If x = 1 x=-1 , the B B and C C terms vanish, leaving us with 3 ( 1 ) 2 + 12 ( 1 ) + 12 = A ( 1 + 2 ) ( 1 + 3 ) + 0 + 0 A = 1 3(-1)^2 + 12(-1)+12=A(-1+2)(-1+3)+0+0\Longrightarrow A = 1 If x = 2 x=-2 , the A A and C C terms zero out, so that 3 ( 2 ) 2 + 12 ( 2 ) + 12 = 0 + B ( 2 + 1 ) ( 2 + 3 ) + 0 B = 1 3(-2)^2 + 12(-2)+12=0+B(-2+1)(-2+3)+0\Longrightarrow B =1 If x = 3 x=-3 , the A A and B B terms disappear, hence 3 ( 3 ) 2 + 12 ( 3 ) + 12 = 0 + 0 + C ( 3 + 1 ) ( 3 + 2 ) C = 1 3(-3)^2 + 12(-3)+12=0+0+C(-3+1)(-3+2)\Longrightarrow C =1 Therefore, f ( x ) = 3 x 2 + 12 x + 11 x 3 + 6 x 2 + 11 x + 6 = 1 x + 1 + 1 x + 2 + 1 x + 3 f(x) = \frac{3x^2 + 12x + 11}{x^3 + 6x^2 + 11x + 6} = \frac{1}{x + 1} + \frac{1}{x + 2} + \frac{1}{x + 3} Now, each fraction is way easier to differentiate than the original one. We proceed as f ( x ) = 1 ( x + 1 ) 2 1 ( x + 2 ) 2 1 ( x + 3 ) 2 f ( x ) = 2 ( x + 1 ) 3 + 2 ( x + 2 ) 3 + 2 ( x + 3 ) 3 f ( x ) = 6 ( x + 1 ) 4 6 ( x + 2 ) 4 6 ( x + 3 ) 4 f ( 0 ) = 6 ( 0 + 1 ) 4 6 ( 0 + 2 ) 4 6 ( 0 + 3 ) 4 = 1393 216 \begin{aligned} f'(x) &= -\frac{1}{(x+1)^2}-\frac{1}{(x+2)^2}-\frac{1}{(x+3)^2} \\ f''(x) &= \frac{2}{(x+1)^3}+\frac{2}{(x+2)^3}+\frac{2}{(x+3)^3} \\ f'''(x) &= -\frac{6}{(x+1)^4}-\frac{6}{(x+2)^4}-\frac{6}{(x+3)^4} \\ \therefore f'''(0) &= -\frac{6}{(0+1)^4}-\frac{6}{(0+2)^4}-\frac{6}{(0+3)^4}=-\frac{1393}{216} \\ \end{aligned} giving a + b = 1393 + 216 = 1609 a+b=1393+216=\boxed{1609} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...