But how?

Calculus Level 5

n = 1 k = 1 i = 1 n k i ( n + k + i ) ! = A B e \large \displaystyle\sum_{n=1}^\infty\sum_{k=1}^\infty\sum _{ i=1 }^{ \infty }{ \dfrac { nki }{ (n+k+i)! } } =\dfrac { A }{ B } e

The equation above holds true for coprime positive integers A A and B B . Find A + B A+B .

Clarification : e 2.71828 e \approx 2.71828 is the Euler's number .


The answer is 151.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Julian Poon
May 25, 2016

I hope there is a better solution to this.

First, notice that the sum above (S) can be expressed as:

S = x a = 1 b = 1 c = 1 x a b c ( a + b + c ) ! x = 1 S=\frac{\partial}{\partial x}\sum _{a=1}^{ \infty}\sum _{b=1}^{ \infty}\sum _{c=1}^{ \infty}\frac{x^{abc}}{\left(a+b+c\right)!}\Bigg\vert_{x=1}

Letting K = a + b + c K=a+b+c

a = 1 b = 1 c = 1 x a b c ( a + b + c ) ! = K = 1 a = 1 K 1 b = 1 K 1 a x a b ( K a b ) K ! \sum _{a=1}^{ \infty}\sum _{b=1}^{ \infty}\sum _{c=1}^{ \infty}\frac{x^{abc}}{\left(a+b+c\right)!}=\sum _{K=1}^{\infty }\sum _{a=1}^{K-1}\sum _{b=1}^{K-1-a}\frac{x^{ab(K-a-b)}}{K!}

S = x K = 1 a = 1 K 1 b = 1 K 1 a x a b ( K a b ) K ! x = 1 = K = 1 1 K ! a = 1 K 1 b = 1 K 1 a a b ( K a b ) S=\frac{\partial}{\partial x}\sum _{K=1}^{\infty }\sum _{a=1}^{K-1}\sum _{b=1}^{K-1-a}\frac{x^{ab(K-a-b)}}{K!}\Bigg\vert_{x=1}=\sum _{K=1}^{\infty }\frac{1}{K!}\sum _{a=1}^{K-1}\sum _{b=1}^{K-1-a}a\cdot b\cdot \left(K-a-b\right)

Through tedious working,

K = 1 1 K ! a = 1 K 1 b = 1 K 1 a a b ( K a b ) = 1 120 K = 1 1 K ! ( K 1 ) ( K ) ( K 3 + K 2 4 K 4 ) = 31 120 e \sum _{K=1}^{\infty }\frac{1}{K!}\sum _{a=1}^{K-1}\sum _{b=1}^{K-1-a}a\cdot b\cdot \left(K-a-b\right)=\frac{1}{120}\sum _{K=1}^{\infty }\frac{1}{K!}\left(K-1\right)\left(K\right)\left(K^3+K^2-4K-4\right)=\frac{31}{120}e

Moderator note:

It's not clear to me why you needed to use the partial derivative. You could have gone through the same argument directly, and provide a justification for the interchange of order (which is alright since all of the terms are positive).

The "tedious working" part could be justified with some combinatorial counting of a b c \sum abc given that a + b + c = K a+b+c = K .

Hamza A
May 27, 2016

let S S denote the above sum,

first we do something that'll help us in converting the sum into an integral,we write the following sum as a , b , c = 1 a b c ( a + b + c ) ! = a , b , c = 1 a b c ( a + b ) ! ( c 1 ) ! ( a + b ) ! ( c 1 ) ! ( a + b + c ) ! \sum _{ a,b,c=1 }^{ \infty }{ \frac { abc }{ (a+b+c)! } } =\sum _{ a,b,c=1 }^{ \infty }{ \frac { abc }{ (a+b)!(c-1)! } \cdot \frac { (a+b)!(c-1)! }{ (a+b+c)! } }

converting the 2nd fraction into an integral we have

S = a , b , c = 1 a b c ( a + b ) ! ( c 1 ) ! 0 1 x a + b ( 1 x ) c 1 d x S=\sum _{ a,b,c=1 }^{ \infty }{ \frac { abc }{ (a+b)!(c-1)! } \int _{ 0 }^{ 1 }{ { x }^{ a+b }\left( 1-x \right) ^{ c-1 } } dx}

interchanging the summation and integral we get

S = 0 1 ( a , b = 1 a b x a + b ( a + b ) ! ) ( c = 1 c ( 1 x ) c 1 ( c 1 ) ! ) d x S=\int _{ 0 }^{ 1 }{ \left( \sum _{ a,b=1 }^{ \infty }{ \frac { ab{ x }^{ a+b } }{ (a+b)! } } \right) \left( \sum _{ c=1 }^{ \infty }{ \frac { c(1-x)^{ c-1 } }{ (c-1)! } } \right) dx }

then after we evaluate each summation,we get

S = 0 1 e x x 2 ( 1 2 + x 6 ) e 1 x ( 2 x ) d x = e 0 1 ( x 3 6 + x 2 2 ) ( 2 x ) d x = 31 120 e S= \int _{ 0 }^{ 1 }{ { e }^{ x }{ x }^{ 2 }\left( \frac { 1 }{ 2 } +\frac { x }{ 6 } \right) { e }^{ 1-x }(2-x)dx } =e\int _{ 0 }^{ 1 }{ \left( \frac { { x }^{ 3 } }{ 6 } +\frac { { x }^{ 2 } }{ 2 } \right) (2-x)dx }= \boxed{\frac { 31 }{ 120 } e}


Notation used :

n 1 , n 2 , n 3 . . . , n k = 1 a n 1 , n 2 , . . n k = n 1 = 1 n 2 = 1 n k = 1 a n 1 , n 2 , . . n k \sum _{ { n }_{ 1 },{ n }_{ 2 },{ n }_{ 3 }...,{ n }_{ k }=1 }^{ \infty }{ { a }_{ { n }_{ 1 },{ n }_{ 2 },..{ n }_{ k } } } =\sum _{ { n }_{ 1 }=1 }^{ \infty }{ \sum _{ { n }_{ 2 }=1 }^{ \infty }{ \cdot \cdot \cdot \sum _{ { n }_{ k }=1 }^{ \infty }{ { a }_{ { n }_{ 1 },{ n }_{ 2 },..{ n }_{ k } } } } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...