But How Many Digits Are There?

Calculus Level 2

lim n 1 0 n + 1 ( x n x n y n y n ) \large \displaystyle \lim_{n\to\infty}10^{n+1}\left(x_n^{x_n} - y_n^{y_n}\right)

Let x n = 1. 000000000 0 n number of 0’s 1 x_n = 1.\underbrace{000000000\ldots 0}_{n \text{ number of 0's}}1 and y n = 0. 999999999 9 ( n + 1 ) number of 9’s y_n = 0.\underbrace{999999999\ldots9}_{(n+1) \text{ number of 9's}} .

Compute the limit above.


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 30, 2016

We note that { x n = 1 + 1 0 ( n + 1 ) y n = 1 1 0 ( n + 1 ) \begin{cases} x_n = 1+10^{-(n+1)} \\ y_n = 1 - 10^{-(n+1)} \end{cases} . Let a = 1 0 ( n + 1 ) a = 10^{-(n+1)} { x n = 1 + a y n = 1 a \implies \begin{cases} x_n = 1+a \\ y_n = 1 - a \end{cases} and as n n \to \infty , a 0 a \to 0 .

Then, we have:

L = lim n 1 0 n + 1 ( x n x n y n y n ) = lim a 0 1 a ( ( 1 + a ) 1 + a ( 1 a ) 1 a ) Since this is a 0 / 0 case, we can use L’H o ˆ pital’s rule. = lim a 0 1 1 ( ( 1 + a ) 1 + a ( ln ( 1 + a ) + 1 ) ( 1 a ) a ( a 1 ) ( ln ( 1 a ) + 1 ) ) Differentiating up and down w.r.t a . = 2 \begin{aligned} L & = \lim_{n \to \infty} 10^{n+1} \left(x_n^{x_n} - y_n^{y_n} \right) \\ & = \lim_{a \to 0} \frac 1a \left((1+a)^{1+a}-(1-a)^{1-a} \right) \quad \quad \small \color{#3D99F6}{\text{Since this is a }0/0 \text{ case, we can use L'Hôpital's rule.}} \\ & = \lim_{a \to 0} \frac 11 \left((1+a)^{1+a} (\ln(1+a)+1)-(1-a)^{-a}(a-1)(\ln(1-a)+1) \right) \quad \quad \small \color{#3D99F6}{\text{Differentiating up and down w.r.t }a.} \\ & = \boxed{2} \end{aligned}

Nice & elegant presentation of finding the limit.Just in the last but one line:... -(1-a)^(-a) (a-1) (...) and not...-(1-a)^(a) (a-1) (...).

vinod trivedi - 4 years, 10 months ago

Log in to reply

Thanks. I have done the change.

Chew-Seong Cheong - 4 years, 10 months ago
Aakash Khandelwal
Jun 29, 2016

Writing

x n = 1 + 1 0 ( n + 1 ) x_{n} = 1+ 10^{-(n+1)}

And

y n = 1 1 0 ( n + 1 ) y_{n}= 1-10^{-(n+1)} .

Now we know for small κ \kappa , n R \forall n \in R

( 1 + κ ) n = 1 + n κ (1+\kappa )^{n} = 1+ n\kappa

Using the above approximation , value of limit is

2 2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...