tan 8 1 ∘ − tan 6 3 ∘ − tan 2 7 ∘ + tan 9 ∘ = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice solution +0! . :)
I like that you were able to solve it without relying on knowing/deriving any obscure trig values (e.g., sin(54)).
Relevant wiki: Sum and Difference Trigonometric Formulas - Problem Solving
( tan 8 1 ∘ + tan 9 ∘ ) − ( tan 6 3 ∘ + tan 2 7 ∘ )
= ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ 2 sin 1 8 ∘ cos 9 ∘ sin 9 ∘ cos 8 1 ∘ sin 9 0 ∘ 1 ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞ − ⎝ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎛ 2 sin 5 4 ∘ cos 2 7 ∘ sin 2 7 ∘ cos 6 3 ∘ sin 9 0 ∘ 1 ⎠ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎞
= 2 ⎝ ⎛ 4 5 − 1 1 − 4 5 + 1 1 ⎠ ⎞
= 2 × 2 = 4
In second line I used : tan A + tan B = cos A cos B sin ( A + B )
Also, sin 1 8 ∘ = 4 5 − 1 , sin 5 4 ∘ = 4 5 + 1
X = tan 8 1 ∘ − tan 6 3 ∘ − tan 2 7 ∘ + tan 9 ∘ = ( tan 8 1 ∘ + tan 9 ∘ ) − ( tan 6 3 ∘ + tan 2 7 ∘ ) = ( cos 8 1 ∘ sin 8 1 ∘ + cos 9 ∘ sin 9 ∘ ) − ( cos 6 3 ∘ sin 6 3 ∘ + cos 2 7 ∘ sin 2 7 ∘ ) = sin 9 ∘ cos 9 ∘ sin 8 1 ∘ cos 9 ∘ + cos 8 1 ∘ sin 9 ∘ − sin 2 7 ∘ cos 2 7 ∘ sin 6 3 ∘ cos 2 7 ∘ + cos 6 3 ∘ sin 2 7 ∘ = 2 1 sin 1 8 ∘ sin 9 0 ∘ − 2 1 sin 5 4 ∘ sin 9 0 ∘ = sin 1 8 ∘ 2 − sin 5 4 ∘ 2 = cos 7 2 ∘ 2 − cos 3 6 ∘ 2 = cos 3 6 ∘ cos 7 2 ∘ 2 ( cos 3 6 ∘ − cos 7 2 ∘ ) = cos 3 6 ∘ cos 7 2 ∘ 2 ( cos 3 6 ∘ + cos 1 0 8 ∘ ) Note that cos 5 π + cos 5 3 π = 2 1 = 4 1 2 ⋅ 2 1 = 4 sin 3 6 ∘ sin 3 6 ∘ cos 3 6 ∘ cos 7 2 ∘ = 2 sin 3 6 ∘ sin 7 2 ∘ cos 7 2 ∘ = 4 sin 3 6 ∘ sin 1 4 4 ∘ = 4 sin 3 6 ∘ sin 3 6 ∘ = 4 1
Problem Loading...
Note Loading...
Set Loading...
tan 8 1 ∘ − tan 6 3 ∘ − tan 2 7 ∘ + tan 9 ∘ = tan 8 1 ∘ − tan 6 3 ∘ − cot 6 3 ∘ + cot 8 1 ∘ = tan 8 1 ∘ + tan 8 1 ∘ 1 − tan 6 3 ∘ − tan 6 3 ∘ 1 = tan 8 1 ∘ tan 2 8 1 ∘ + 1 − tan 6 3 ∘ tan 2 6 3 ∘ + 1 = tan 8 1 ∘ sec 2 8 1 ∘ − tan 6 3 ∘ sec 2 6 3 ∘ = cos 8 1 ∘ sin 8 1 ∘ cos 2 8 1 ∘ 1 − cos 6 3 ∘ sin 6 3 ∘ cos 2 6 3 ∘ 1 = cos 2 8 1 ∘ sin 8 1 ∘ cos 8 1 ∘ − cos 2 6 3 ∘ sin 6 3 ∘ cos 6 3 ∘ = cos 8 1 ∘ sin 8 1 ∘ 1 − cos 6 3 ∘ sin 6 3 ∘ 1 = 2 cos 8 1 ∘ sin 8 1 ∘ 2 − 2 cos 6 3 ∘ sin 6 3 ∘ 2 = sin 1 6 2 ∘ 2 − sin 1 2 6 ∘ 2 = sin 1 8 ∘ 2 − sin 5 4 ∘ 2 = 2 ( sin 5 4 ∘ sin 1 8 ∘ sin 5 4 ∘ − sin 1 8 ∘ ) = 4 ( 2 sin 5 4 ∘ sin 1 8 ∘ sin 5 4 ∘ − sin 1 8 ∘ ) = 4 ( cos 3 6 ∘ − cos 7 2 ∘ sin 5 4 ∘ − sin 1 8 ∘ ) = 4 ( sin 5 4 ∘ − sin 1 8 ∘ sin 5 4 ∘ − sin 1 8 ∘ ) = 4
Formulas used: