Tangents Of Multiples Of Nine

Geometry Level 3

tan 8 1 tan 6 3 tan 2 7 + tan 9 = ? \large \tan 81^\circ-\tan 63^\circ-\tan27^\circ+\tan9^\circ= \, ?


The answer is 4.0000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Hung Woei Neoh
Jun 23, 2016

tan 8 1 tan 6 3 tan 2 7 + tan 9 = tan 8 1 tan 6 3 cot 6 3 + cot 8 1 = tan 8 1 + 1 tan 8 1 tan 6 3 1 tan 6 3 = tan 2 8 1 + 1 tan 8 1 tan 2 6 3 + 1 tan 6 3 = sec 2 8 1 tan 8 1 sec 2 6 3 tan 6 3 = 1 cos 2 8 1 sin 8 1 cos 8 1 1 cos 2 6 3 sin 6 3 cos 6 3 = cos 8 1 cos 2 8 1 sin 8 1 cos 6 3 cos 2 6 3 sin 6 3 = 1 cos 8 1 sin 8 1 1 cos 6 3 sin 6 3 = 2 2 cos 8 1 sin 8 1 2 2 cos 6 3 sin 6 3 = 2 sin 16 2 2 sin 12 6 = 2 sin 1 8 2 sin 5 4 = 2 ( sin 5 4 sin 1 8 sin 5 4 sin 1 8 ) = 4 ( sin 5 4 sin 1 8 2 sin 5 4 sin 1 8 ) = 4 ( sin 5 4 sin 1 8 cos 3 6 cos 7 2 ) = 4 ( sin 5 4 sin 1 8 sin 5 4 sin 1 8 ) = 4 \tan 81^{\circ} - \tan 63^{\circ} - \tan 27^{\circ} + \tan 9^{\circ}\\ =\tan 81^{\circ} - \tan 63^{\circ} - \color{#3D99F6}{\cot 63^{\circ}} + \color{#3D99F6}{\cot 81^{\circ}}\\ =\tan 81^{\circ} + \color{#EC7300}{\dfrac{1}{\tan 81^{\circ}}} - \tan 63^{\circ} - \color{#EC7300}{\dfrac{1}{\tan 63^{\circ}}}\\ =\dfrac{\tan^2 81^{\circ} + 1}{\tan 81^{\circ}} - \dfrac{\tan^2 63^{\circ}+1}{\tan 63^{\circ}}\\ =\dfrac{\color{magenta}{\sec^2 81^{\circ}}}{\tan 81^{\circ}} - \dfrac{\color{magenta}{\sec^2 63^{\circ}}}{\tan 63^{\circ}}\\ =\dfrac{\color{teal}{\frac{1}{\cos^2 81^{\circ}}}}{\color{#BBBBBB}{\frac{\sin 81^{\circ}}{\cos 81^{\circ}}}} - \dfrac{\color{teal}{\frac{1}{\cos^2 63^{\circ}}}}{\color{#BBBBBB}{\frac{\sin 63^{\circ}}{\cos 63^{\circ}}}}\\ =\dfrac{\cos 81^{\circ}}{\cos^2 81^{\circ} \sin 81^{\circ}} - \dfrac{\cos 63^{\circ}}{\cos^2 63^{\circ}\sin 63^{\circ}}\\ =\dfrac{1}{\cos 81^{\circ}\sin 81^{\circ}} - \dfrac{1}{\cos 63^{\circ}\sin 63^{\circ}}\\ =\dfrac{2}{2\cos 81^{\circ}\sin 81^{\circ}} - \dfrac{2}{2\cos 63^{\circ}\sin 63^{\circ}}\\ =\dfrac{2}{\color{#69047E}{\sin 162^{\circ}}} - \dfrac{2}{\color{#69047E}{\sin 126^{\circ}}}\\ =\dfrac{2}{\color{#20A900}{\sin 18^{\circ}}} - \dfrac{2}{\color{#20A900}{\sin 54^{\circ}}}\\ =2\left(\dfrac{\sin 54^{\circ} - \sin 18^{\circ}}{\sin 54^{\circ}\sin 18^{\circ}}\right)\\ =4\left(\dfrac{\sin 54^{\circ}-\sin 18^{\circ}}{2\sin 54^{\circ}\sin 18^{\circ}}\right)\\ =4\left(\dfrac{\sin 54^{\circ}-\sin 18^{\circ}}{\color{#27D2E7}{\cos 36^{\circ} - \cos 72^{\circ}}}\right)\\ =4\left(\dfrac{\sin 54^{\circ} - \sin 18^{\circ}}{\color{#D61F06}{\sin 54^{\circ}} - \color{#D61F06}{\sin 18^{\circ}}}\right)\\ =\boxed{4}


Formulas used:

  1. Complementary angles - For 0 < x < 9 0 , tan x = cot ( 9 0 x ) 0^{\circ}<x<90^{\circ},\;\color{#3D99F6}{\tan x = \cot(90^{\circ}-x)}
  2. Definition of cotangent - cot x = 1 tan x \color{#EC7300}{\cot x = \dfrac{1}{\tan x}}
  3. Pythagorean trigonometric identities - tan 2 x + 1 = sec 2 x \color{magenta}{\tan ^2 x + 1 = \sec^2 x}
  4. Definition of secant - sec x = 1 cos x sec 2 x = 1 cos 2 x \sec x = \dfrac{1}{\cos x} \implies \color{teal}{\sec^2 x = \dfrac{1}{\cos^2 x}}
  5. Definition of tangent - tan x = sin x cos x \color{#BBBBBB}{\tan x = \dfrac{\sin x}{\cos x}}
  6. Double angle formula - 2 sin x cos x = sin 2 x \color{#69047E}{2\sin x \cos x = \sin 2x}
  7. Unit circle and reference angles - For 9 0 < x < 18 0 , sin x = sin ( 18 0 x ) 90^{\circ} < x < 180^{\circ},\;\color{#20A900}{\sin x = \sin(180^{\circ} - x)}
  8. Product to sum formula - sin a sin b = 1 2 ( cos ( a b ) cos ( a + b ) ) 2 sin a sin b = cos ( a b ) cos ( a + b ) \sin a \sin b = \dfrac{1}{2} \Big(\cos(a-b) - \cos(a+b) \Big)\implies \color{#27D2E7}{2 \sin a \sin b = \cos(a-b) - \cos(a+b)}
  9. Complementary angles - For 0 < x < 9 0 , cos x = sin ( 9 0 x ) 0^{\circ}<x<90^{\circ},\;\color{#D61F06}{\cos x = \sin(90^{\circ}-x)}

Nice solution +0! . :)

A Former Brilliant Member - 4 years, 11 months ago

I like that you were able to solve it without relying on knowing/deriving any obscure trig values (e.g., sin(54)).

Eli Ross Staff - 4 years, 10 months ago
Rishabh Jain
Jun 23, 2016

Relevant wiki: Sum and Difference Trigonometric Formulas - Problem Solving

( tan 8 1 + tan 9 ) ( tan 6 3 + tan 2 7 ) (\tan 81^\circ+\tan9^\circ)-(\tan 63^\circ+\tan27^\circ)

= ( sin 9 0 1 cos 9 cos 8 1 sin 9 sin 1 8 2 ) ( sin 9 0 1 cos 2 7 cos 6 3 sin 2 7 sin 5 4 2 ) =\left(\dfrac{\overbrace{\sin 90^{\circ}}^{\color{#D61F06}{1}}}{\underbrace{\cos 9^{\circ}\underbrace{\cos 81^{\circ}}_{\sin9^{\circ}}}_{\color{#D61F06}{\dfrac{\sin 18^{\circ}}{2}}}}\right)-\left( \dfrac{\overbrace{\sin 90^{\circ}}^{\color{#D61F06}{1}}}{\underbrace{\cos 27^{\circ}\underbrace{\cos 63^{\circ}}_{\sin 27^{\circ}}}_{\color{#D61F06}{\dfrac{\sin 54^{\circ}}2}}}\right)

= 2 ( 1 5 1 4 1 5 + 1 4 ) \large=2\left(\dfrac{1}{\frac{\sqrt 5-1}{4}}-\dfrac{1}{\frac{\sqrt 5+1}{4}}\right)

= 2 × 2 = 4 \huge =2\times 2=\boxed{\color{#3D99F6}{4}}


In second line I used : tan A + tan B = sin ( A + B ) cos A cos B \small{\color{teal}{\tan A+\tan B=\dfrac{\sin (A+B)}{\cos A\cos B}}}

Also, sin 1 8 = 5 1 4 , sin 5 4 = 5 + 1 4 \small{\sin 18^{\circ}=\dfrac{\sqrt 5-1}{4},\sin 54^{\circ}=\dfrac{\sqrt 5+1}{4}}

Chew-Seong Cheong
Jun 23, 2016

X = tan 8 1 tan 6 3 tan 2 7 + tan 9 = ( tan 8 1 + tan 9 ) ( tan 6 3 + tan 2 7 ) = ( sin 8 1 cos 8 1 + sin 9 cos 9 ) ( sin 6 3 cos 6 3 + sin 2 7 cos 2 7 ) = sin 8 1 cos 9 + cos 8 1 sin 9 sin 9 cos 9 sin 6 3 cos 2 7 + cos 6 3 sin 2 7 sin 2 7 cos 2 7 = sin 9 0 1 2 sin 1 8 sin 9 0 1 2 sin 5 4 = 2 sin 1 8 2 sin 5 4 = 2 cos 7 2 2 cos 3 6 = 2 ( cos 3 6 cos 7 2 ) cos 3 6 cos 7 2 = 2 ( cos 3 6 + cos 10 8 ) cos 3 6 cos 7 2 Note that cos π 5 + cos 3 π 5 = 1 2 = 2 1 2 1 4 = 4 sin 3 6 cos 3 6 cos 7 2 sin 3 6 = sin 7 2 cos 7 2 2 sin 3 6 = sin 14 4 4 sin 3 6 = sin 3 6 4 sin 3 6 = 1 4 \begin{aligned} X & = \tan 81^\circ - \tan 63^\circ - \tan 27^\circ + \tan 9^\circ \\ & = (\tan 81^\circ + \tan 9^\circ) - (\tan 63^\circ + \tan 27^\circ) \\ & = \left(\frac {\sin 81^\circ}{\cos 81^\circ} + \frac {\sin 9^\circ}{\cos 9^\circ} \right) - \left(\frac {\sin 63^\circ}{\cos 63^\circ} + \frac {\sin 27^\circ}{\cos 27^\circ} \right) \\ & = \frac {\sin 81^\circ \cos 9^\circ + \cos 81^\circ \sin 9^\circ}{\sin 9^\circ \cos 9^\circ} - \frac {\sin 63^\circ \cos 27^\circ + \cos 63^\circ \sin 27^\circ}{\sin 27^\circ \cos 27^\circ} \\ & = \frac {\sin 90^\circ}{\frac 12 \sin 18^\circ} - \frac {\sin 90^\circ}{\frac 12 \sin 54^\circ} \\ & = \frac 2{\sin 18^\circ} - \frac 2{\sin 54^\circ} \\ & = \frac 2{\cos 72^\circ} - \frac 2{\cos 36^\circ} \\ & = \frac {2(\cos 36^\circ - \cos 72^\circ)}{\cos 36^\circ\cos 72^\circ} \\ & = \frac {2(\color{#3D99F6}{\cos 36^\circ + \cos 108^\circ})}{\color{#D61F06}{\cos 36^\circ\cos 72^\circ}} \quad \quad \small \color{#3D99F6}{\text{Note that }\cos \frac \pi 5 + \cos \frac {3\pi}5 = \frac 12} \\ & = \frac {2\cdot \color{#3D99F6}{\frac 12}}{\color{#D61F06}{\frac 14}} = \boxed{4} \quad \quad \small \color{#D61F06}{\frac {\sin 36^\circ\cos 36^\circ\cos 72^\circ}{\sin 36^\circ} = \frac {\sin 72^\circ \cos 72^\circ}{2\sin 36^\circ} = \frac {\sin 144^\circ}{4 \sin 36^\circ} = \frac {\sin 36^\circ}{4 \sin 36^\circ} = \frac 14} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...