What an awkward jump

Algebra Level 2

Given that a + b = 1 a+b=1 and a 2 + b 2 = 2 a^2+b^2=2 , what is the value of a 7 + b 7 a^7+b^7 ?

35 4 \frac{35}4 59 8 \frac{59}8 71 8 \frac{71}8 1 7 \frac17

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Using the given equations, we see that

( a + b ) 2 = 1 a 2 + b 2 + 2 a b = 1 2 + 2 a b = 1 a b = 1 2 . (a + b)^{2} = 1 \Longrightarrow a^{2} + b^{2} + 2ab = 1 \Longrightarrow 2 + 2ab = 1 \Longrightarrow ab = -\dfrac{1}{2}.

Next, we have that

( a 2 + b 2 ) ( a + b ) = 2 a 3 + b 3 + a b ( a + b ) = 2 (a^{2} + b^{2})(a + b) = 2 \Longrightarrow a^{3} + b^{3} + ab(a + b) = 2

a 3 + b 3 1 2 = 2 a 3 + b 3 = 5 2 , \Longrightarrow a^{3} + b^{3} - \dfrac{1}{2} = 2 \Longrightarrow a^{3} + b^{3} = \dfrac{5}{2},

and that

( a 2 + b 2 ) 2 = 4 a 4 + b 4 + 2 ( a b ) 2 = 4 (a^{2} + b^{2})^{2} = 4 \Longrightarrow a^{4} + b^{4} + 2(ab)^{2} = 4

a 4 + b 4 + 2 1 4 = 4 a 4 + b 4 = 7 2 . \Longrightarrow a^{4} + b^{4} + 2*\dfrac{1}{4} = 4 \Longrightarrow a^{4} + b^{4} = \dfrac{7}{2}.

We then find that

( a 3 + b 3 ) ( a 4 + b 4 ) = 5 2 7 2 = 35 4 (a^{3} + b^{3})(a^{4} + b^{4}) = \dfrac{5}{2} * \dfrac{7}{2} = \dfrac{35}{4}

a 7 + b 7 + a 3 b 3 ( a + b ) = a 7 + b 7 + ( a b ) 3 = a 7 + b 7 1 8 = 35 4 \Longrightarrow a^{7} + b^{7} + a^{3}b^{3}(a + b) = a^{7} + b^{7} + (ab)^{3} = a^{7} + b^{7} - \dfrac{1}{8} = \dfrac{35}{4}

a 7 + b 7 = 35 4 + 1 8 = 70 8 + 1 8 = 71 8 . \Longrightarrow a^{7} + b^{7} = \dfrac{35}{4} + \dfrac{1}{8} = \dfrac{70}{8} + \dfrac{1}{8} = \boxed{\dfrac{71}{8}}.

a^2+b^2=2,a+b=1,a=1-b (1-b)^2+b^2=2, 2b^2-2b -1=0, b=(2+root12)/4 or b= (2-root12)/4, we take first b a=1-b=(2-root12)/4 a^7+b^7=71/8

Mostafil Karim - 3 years, 4 months ago

How do I recomment again? I deleted my resolution and now, I can't write it again..

Oleg Turcan - 3 years, 3 months ago

Log in to reply

The only way I can think of is to write your solution as a comment here, then ask staff to convert it into a posted solution.

Brian Charlesworth - 3 years, 3 months ago
Josh Banister
Jul 23, 2015

Firstly, ( a + b ) 2 = 1 a 2 + 2 a b + b 2 = 1 2 + 2 a b = 1 2 a b = 1 a b = 1 2 (a+b)^2 = 1 \\ a^2 + 2ab + b^2 = 1 \\ 2 + 2ab = 1 \\ 2ab = -1 \\ ab = -\frac{1}{2} Let S n = a n + b n S_n = a^n + b^n . By multiplying this by ( a + b ) (a+b) we get: ( a + b ) S n = ( a + b ) ( a n + b n ) 1 × S n = a n + 1 + b n + 1 + a b n + b a n S n = S n + 1 + a b ( a n 1 + b n 1 ) S n = S n + 1 1 2 S n 1 1 2 S n 1 + S n = S n + 1 \begin{aligned} (a+b)S_n &= (a+b)(a^n + b^n) \\ 1\times S_n &= a^{n+1} + b^{n+1} + ab^n + ba^n \\ S_n &= S_{n+1} + ab(a^{n-1} + b^{n-1}) \\ S_n &= S_{n+1} -\frac{1}{2} S_{n-1} \\ \frac{1}{2}S_{n-1} + S_n &= S_{n+1} \end{aligned} From this, we have a simple recurrence formula for S n S_n . Using the initial S 1 = 1 , S 2 = 2 S_1 = 1, S_2 = 2 , we get

S 3 = 1 2 + 2 = 5 2 S 4 = 2 2 + 5 2 = 7 2 S 5 = 19 4 S 6 = 26 4 S 7 = 71 8 \begin{aligned} S_3 &= \frac{1}{2} + 2 = \frac{5}{2} \\ S_4 &= \frac{2}{2} + \frac{5}{2} = \frac{7}{2} \\ S_5 &= \frac{19}{4} \\ S_6 &= \frac{26}{4} \\ S_7 &= \frac{71}{8} \end{aligned}

Therefore a 7 + b 7 = S 7 = 71 8 a^7 + b^7 = S_7 = \frac{71}{8}

Moderator note:

Yes. This question is just a Newton's Sum in disguise.

Hadia Qadir
Jul 29, 2015

Solving the first two equations simulaneously gives a, b = (1+√3)/2, (1-√3)/2. Thus a^7 + b^7 = [(1+√3)/2]^7 + [(1-√3)/2]^7 = 71/8 = 8.875.

Excellent and short way to solve

Faizan Ahmed - 5 years, 10 months ago

Log in to reply

Have you understood ? BTW thank you

Hadia Qadir - 5 years, 10 months ago

Exactly, i have understood so that I added this comment

Faizan Ahmed - 5 years, 10 months ago
Amed Lolo
Jan 2, 2016

a^2+(1-a)^2=2 ,2a^2-2a-1=0,a=(1+or-√3)÷2,b=1-a,so a^7+b7=(1-√3)^7+(1+√3)^7\2^7=8.875=71\8#####

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...