But it's 2017!

Level 2

Let x 1 , x 2 . . . . , x 2014 x_{1},x_{2}....,x_{2014} be positive real numbers such that

j = 1 2014 x j = 1 \large \sum _{ j=1 }^{ 2014 }{ { x }_{ j } } =1 .

Then,

x 1 2 1 x 1 + x 2 2 1 x 2 . . . . . x 2014 2 1 x 2014 1 K \large \frac { { { x }_{ 1 } }^{ 2 } }{ 1-{ x }_{ 1 } } +\frac { { { x }_{ 2 } }^{ 2 } }{ 1-{ x }_{ 2 } } .....\frac { { { { x }_{ 2014 } }^{ 2 } } }{ 1-{ x }_{ 2014 } } \ge \frac { 1 }{ K } .

What is the smallest value of K \large K ?


The answer is 2013.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Md Zuhair
Nov 22, 2017

By Titu's Lemma,

x 1 2 1 x 1 + x 2 2 1 x 2 . . . . . x 2014 2 1 x 2014 ( x 1 + x 2 + . . . x 2014 ) 2 1 x 1 + 1 x 2 + . . . + 1 x 2014 = ( x 1 + x 2 + . . . x 2014 ) 2 2014 x 1 x 2 . . . x 2014 = 1 2014 1 = 1 2013 \large{ \frac { { { x }_{ 1 } }^{ 2 } }{ 1-{ x }_{ 1 } } +\frac { { { x }_{ 2 } }^{ 2 } }{ 1-{ x }_{ 2 } } .....\frac { { { { x }_{ 2014 } }^{ 2 } } }{ 1-{ x }_{ 2014 } } \geq \frac{(x_{1}+x_{2}+...x_{2014})^{2}}{1-x_{1}+1-x_{2}+...+1-x_{2014}} = \frac{(x_{1}+x_{2}+...x_{2014})^{2}}{2014-x_{1}-x_{2}-...x_{2014}} = \dfrac{1}{2014-1} = \dfrac{1}{2013}}

So the least value of K = 2013 \boxed{K =2013}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...