But the root is imaginary!

Algebra Level 3

If x 2 + x + 1 = 0 , x^2+x+1=0, find the value of x 1999 + x 2000 . x^{1999}+x^{2000}.


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Chew-Seong Cheong
Jun 21, 2016

x 2 + x + 1 = 0 Multiplying x both sides x 3 + x 2 + x = 0 Adding 1 both sides x 3 + x 2 + x + 1 = 1 Note that x 2 + x + 1 = 0 x 3 = 1 x 4 = x x 5 = x 2 x 6 = 1 . . . = . . . x k = x k m o d 3 x 1999 + x 2000 = x + x 2 Note that x 2 + x + 1 = 0 = 1 \begin{aligned} x^2+x+1 & = 0 \quad \quad \small \color{#3D99F6}{\text{Multiplying }x \text{ both sides}} \\ \implies x^3+x^2+x & = 0 \quad \quad \small \color{#3D99F6}{\text{Adding }1 \text{ both sides}} \\ x^3+\color{#3D99F6}{x^2+x + 1} & = 1 \quad \quad \small \color{#3D99F6}{\text{Note that }x^2+x + 1=0} \\ \implies x^3 & = 1 \\ x^4 & = x \\ x^5 & = x^2 \\ x^6 & = 1 \\ ... \ & = \ ... \\ \implies x^k & = x^{k \mod 3} \\ \implies x^{1999} + x^{2000} & = \color{#3D99F6}{x + x^2} \quad \quad \small \color{#3D99F6}{\text{Note that }x^2+x + 1=0} \\ & = \boxed{-1} \end{aligned}

Sir a very nice explanation, again !. :-)

Achal Jain - 4 years, 12 months ago

good one ...+1

Ayush G Rai - 4 years, 11 months ago
Arturo Presa
Jun 23, 2016

If w w is a solution of the equation w 2 + w + 1 = 0 , w^2+w+1=0, then multiplying both sides of the equation by ( w 1 ) (w-1) we get the equation that w 3 1 = 0 , w^3-1=0, or, equivalently, w 3 = 1 w^3=1 , and therefore w 3 k = 1. w^{3k}=1. Then w 1999 + w 2000 = w 3 ( 666 ) w + w 3 ( 666 ) w 2 = w + w 2 = 1. w^{1999}+w^{2000}=w^{3(666)} w+w^{3(666)} w^2=w+w^2=-1.

Akash Shukla
Jun 21, 2016

x 2 + x + 1 = 0 x^2+x+1 = 0

x + 1 = x 2 . . . . . ( 1 ) x+1 = -x^2 ..... (1)

x = 1 ± 3 i 2 = e ± 2 π 3 x=\dfrac{-1±\sqrt{3}i}{2} = e^{±\dfrac{2\pi}{3}}

x 1999 + x 2000 = x 1999 ( x + 1 ) = x 1999 ( x ) 2 x^{1999}+x^{2000} = x^{1999}(x+1) = x^{1999}(-x)^2 ....... from(1)

= x 2001 = e ± 2 π 3 2001 = e ± 1334 π = 1 = -x^{2001} =- e^{±\dfrac{2\pi}{3} * 2001} = -e^{±1334\pi} = \boxed{-1}

This is how I did it. +1

Jerry McKenzie - 4 years ago

x 2 + x + 1 = 0 ( x 1 ) ( x 2 + x + 1 ) = 0 x 3 = 1 x^2+x+1=0 \Rightarrow (x-1)(x^2+x+1)=0 \Rightarrow x^3=1 This means: x 1999 + x 2000 = x 1998 ( x 2 + x ) = ( x 3 ) a 1 = 1 1 = 1 x^{1999}+x^{2000}=x^{1998}(x^2+x)=(x^3)^{a}\cdot -1=1\cdot -1=-1

good one..+1

Ayush G Rai - 4 years, 11 months ago
Hung Woei Neoh
Jun 22, 2016

Combining @Chew-Seong Cheong and @Akash Shukla 's solutions

x 2 + x + 1 = 0 x 3 + x 2 + x = 0 x 3 + x 2 + x + 1 = 1 x 3 = 1 x^2+x+1 =0\\ x^3+x^2+x=0\\ x^3+x^2+x+1 = 1\\ \color{#D61F06}{x^3=1}

x 2 + x + 1 = 0 x + 1 = x 2 x^2+x+1=0 \implies \color{#3D99F6}{x+1=-x^2}

x 2000 + x 1999 = x 1999 ( x + 1 ) = x 1999 ( x 2 ) = x 2001 = ( x 3 ) 667 = 1 667 = 1 x^{2000}+x^{1999}\\ =x^{1999}\color{#3D99F6}{(x+1)}\\ =x^{1999}(-x^2)\\ =-x^{2001}\\ =-\color{#D61F06}{(x^3)}^{667}\\ =-1^{667}\\ =\boxed{-1}


Alternate method (the method I used):

x 2000 + x 1999 = x 2000 + x 1999 + x 1998 x 1998 = x 1998 ( x 2 + x + 1 ) x 1998 = x 1998 = x 1998 x 1997 x 1996 + x 1997 + x 1996 = x 1996 ( x 2 + x + 1 ) + x 1997 + x 1996 = x 1997 + x 1996 = x 1997 + x 1996 + x 1995 x 1995 = x 1995 ( x 2 + x + 1 ) x 1995 = x 1995 = x 1995 x 1994 x 1993 + x 1994 + x 1993 = x 1993 ( x 2 + x + 1 ) + x 1994 + x 1993 = x 1994 + x 1993 x^{2000}+x^{1999}\\ =x^{2000}+x^{1999}+x^{1998}-x^{1998}\\ =x^{1998}(x^2+x+1)-x^{1998}\\ =-x^{1998}\\ =-x^{1998}-x^{1997}-x^{1996}+x^{1997}+x^{1996}\\ =-x^{1996}(x^2+x+1)+x^{1997}+x^{1996}\\ =x^{1997}+x^{1996}\\ =x^{1997}+x^{1996}+x^{1995}-x^{1995}\\ =x^{1995}(x^2+x+1)-x^{1995}\\ =-x^{1995}\\ =-x^{1995}-x^{1994}-x^{1993}+x^{1994}+x^{1993}\\ =-x^{1993}(x^2+x+1)+x^{1994}+x^{1993}\\ =x^{1994}+x^{1993}

Notice that x 2000 + x 1999 = x 1997 + x 1996 = x 1994 + x 1993 = x^{2000}+x^{1999} = x^{1997}+x^{1996}=x^{1994}+x^{1993}=\ldots

From this, we can infer that x n + x n 1 = x n 3 + x n 4 = x n 6 + x n 7 = x^n+x^{n-1} = x^{n-3}+x^{n-4}=x^{n-6}+x^{n-7}=\ldots

We notice that the powers form an AP: 2000 , 1997 , 1994 , 2000,1997,1994,\ldots

Now, we look for the smallest positive term for this AP

2000 + ( n 1 ) ( 3 ) 0 2003 3 n 0 3 n 2003 n 2003 3 = 667 2 3 2000+(n-1)(-3) \geq 0\\ 2003 -3n \geq 0\\ 3n \leq 2003\\ n \leq \dfrac{2003}{3} = 667\dfrac{2}{3}

The smallest positive term = 2000 + ( 667 1 ) ( 3 ) = 2 =2000+(667-1)(-3) = 2

From this, we know that x 2000 + x 1999 = x 2 + x = 1 x^{2000}+x^{1999} = x^2+x = \boxed{-1}

Suvaditya Sur
Jun 22, 2016

x^{2}+x+1=0 => x = ω , ω^{2} \newline x^{1999} + x^{2000} = ω + ω^{2} = -1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...