They Are Spelled The Same, Aren't They?

Which is larger? 2 30 ! or ( 2 30 ) ! \large 2^{30!} \quad \text{or} \quad (2^{30})!

2 30 ! { 2 }^{ 30! } ( 2 30 ) ! ({ 2 }^{ 30 })! They are equal

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Discussions for this problem are now closed

First, note that

( 2 30 ) ! = 1 2 2 30 < 2 30 2 30 2 30 = 2 30 2 30 . (2^{30})! = 1 \cdot 2 \cdots 2^{30} < 2^{30} \cdot 2^{30} \cdots 2^{30} = 2^{30 \cdot 2^{30}}.

Then, using the fact that 2 30 < 29 ! 2^{30} < 29! (see comments for an explanation of this), 2 30 < 29 ! 2^{30} < 29! so 30 2 30 < 30 ! , 30\cdot 2^{30} < 30!, and thus 2 30 2 30 < 2 30 ! . 2^{30\cdot 2^{30}} < 2^{30!}.

Finally, this gives ( 2 30 ) ! < 2 30 2 30 < 2 30 ! , (2^{30})! < 2^{30*2^{30}} < 2^{30!}, so ( 2 30 ) ! < 2 30 ! . (2^{30})! < 2^{30!}.

Nontrivial that 2 30 < 29 ! 2^{30} < 29!

Kane Williams - 5 years, 1 month ago

29 ! = 29 28 2 1 > 8 ( 2 2 2 ) 1 = 2 3 2 27 = 2 30 29! = 29 \cdot 28 \cdot \ldots \cdot 2 \cdot 1 > 8 \cdot (2 \cdot 2 \cdot \ldots \cdot 2) \cdot 1 = 2^3 \cdot 2^{27} = 2^{30}

Ivan Koswara - 5 years, 1 month ago

29 ! = 2 3 . . . 29 29 ! = ( 2 4 . . . 28 ) ( 3 5 . . . 29 ) 29 ! = 2 14 ( 2 3 . . . 14 ) ( 3 5 . . . 29 ) 29 ! = 2 14 ( 2 4 . . . 14 ) ( 3 5 . . . 13 ) ( 3 5 . . . 29 ) 29 ! = 2 21 ( 2 3 . . . 7 ) ( 3 5 . . . 13 ) ( 3 5 . . . 29 ) 29 ! = 2 21 ( 2 4 6 ) ( 3 5 7 ) ( 3 5 . . . 13 ) ( 3 5 . . . 29 ) 29 ! = 2 24 ( 2 3 ) ( 3 5 7 ) ( 3 5 . . . 13 ) ( 3 5 . . . 29 ) 29 ! = 2 25 ( 3 ) ( 3 5 7 ) ( 3 5 . . . 13 ) ( 3 5 . . . 29 ) 29 ! = 2 25 3 4 ( 5 7 ) ( 5 . . . 13 ) ( 5 . . . 29 ) 29! = 2 * 3 *...* 29 \\ 29! = (2 * 4 *...* 28)(3*5*...*29) \\ 29! = 2^{14}(2*3*...*14)(3*5*...*29) \\ 29! = 2^{14}(2*4*...*14)(3*5*...*13)(3*5*...*29) \\ 29! = 2^{21}(2*3*...*7)(3*5*...*13)(3*5*...*29) \\ 29! = 2^{21}(2*4*6)(3*5*7)(3*5*...*13)(3*5*...*29) \\ 29! = 2^{24}(2*3)(3*5*7)(3*5*...*13)(3*5*...*29) \\ 29!= 2^{25}(3)(3*5*7)(3*5*...*13)(3*5*...*29) \\ 29! = 2^{25}*3^{4}(5*7)(5*...*13)(5*...*29) \\

2 30 = 2 25 2 5 2^{30} = 2^{25}*2^{5} \\

32 < 81 2 5 < 3 4 2 5 < 3 4 ( 5 7 ) ( 5 . . . 13 ) ( 5 . . . 29 ) 2 30 < 2 25 3 4 ( 5 7 ) ( 5 . . . 13 ) ( 5 . . . 29 ) 2 30 < 29 ! 32 < 81 \\ 2^{5} < 3^{4} \\ 2^{5} < 3^{4}(5*7)(5*...*13)(5*...*29) \\ 2^{30} < 2^{25}*3^{4}(5*7)(5*...*13)(5*...*29) \\ 2^{30} < 29!

Reasonably nontrivial, I suppose...

Alexander Suarez-Beard - 5 years, 1 month ago

I like the way you proved. Comparing their logarithm of base e is however another practical way using calculator.

Lu Chee Ket - 4 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...