But we can't compare them or can we?

Algebra Level 2

Which of the following is greater? 1001 + 999 or 2 1000 \color{#3D99F6}{\sqrt {1001}+\sqrt {999}} ~~~~ \text {or}~~~~ \color{#20A900}{2\sqrt {1000}}

1001 + 999 \sqrt {1001}+\sqrt {999} 2 1000 2\sqrt {1000}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

12 solutions

Rohit Udaiwal
Nov 4, 2015

1 1000 + 1001 < 1 1000 + 999 \dfrac {1}{\sqrt {1000}+\sqrt {1001}}<\dfrac {1}{\sqrt {1000}+\sqrt{999}}

Rationalize the denominators to obtain

1001 1000 < 1000 999 \sqrt {1001}-\sqrt {1000}<\sqrt {1000}-\sqrt {999}

Rearranging both sides yields

1001 + 999 < 2 1000 \sqrt {1001}+\sqrt {999}<2\sqrt {1000}

Nice solution really amazing keep it up

Saurabh KR - 5 years, 6 months ago

Log in to reply

very clean indeed

Iqbal Mohammad - 5 years, 4 months ago
Otto Bretscher
Nov 4, 2015

f ( x ) = x f(x)=\sqrt{x} is (strictly) concave since f ( x ) = 1 2 x f'(x)=\frac{1}{2\sqrt{x}} is decreasing. Now 1000 > 999 + 1001 2 \sqrt{1000}>\frac{\sqrt{999}+\sqrt{1001}}{2} by definition of concavity.

Aareyan Manzoor
Nov 4, 2015

1001 + 999 = 1001 + 999 + 2 1001 999 = 2000 + 2 100 0 2 1 \sqrt{1001}+\sqrt{999}=\sqrt{1001+999+2\sqrt{1001*999}}=\sqrt{2000+2\sqrt{1000^2-1}} 2 1000 = 4000 2\sqrt{1000}=\sqrt{4000} 2000 + 2 100 0 2 1 ? 4000 \sqrt{2000+2\sqrt{1000^2-1}}\boxed{?}\sqrt{4000} 2000 + 2 100 0 2 1 ? 4000 2000+2\sqrt{1000^2-1}\boxed{?} 4000 100 0 2 1 ? 1000 \sqrt{1000^2-1}\boxed{?} 1000 100 0 2 1 ? 100 0 2 1000^2-1\boxed{?} 1000^2 100 0 2 1 < 100 0 2 1000^2-1\boxed{<}1000^2

I just square both sides,

1001+999+2V(1001X999) ??? 4X1000

2000+2V999,999 ??? 4000

V999,999 ??? 1000

V999,999 < V1,000,000

Mohammad Helmi - 5 years, 7 months ago

I did same!!

Dev Sharma - 5 years, 7 months ago

Best and easy to understand

Ashwani Tyagi - 5 years, 7 months ago
Jake Lai
Nov 6, 2015

We know that x + y 2 x 2 + y 2 2 \displaystyle \frac{x+y}{2} \leq \sqrt{\frac{x^2+y^2}{2}} (the QM-AM inequality). If we have x = 1001 x = \sqrt{1001} and y = 999 y = \sqrt{999} , we get that

1001 + 999 2 ( 1001 ) 2 + ( 999 ) 2 2 = 1001 + 999 2 = 1000 \frac{\sqrt{1001}+\sqrt{999}}{2} \leq \sqrt{\frac{(\sqrt{1001})^2+(\sqrt{999})^2}{2}} = \sqrt{\frac{1001+999}{2}} = \sqrt{1000}

Multiplying two on both sides we have

1001 + 999 2 1000 \sqrt{1001}+\sqrt{999} \leq 2\sqrt{1000}

Since both sides are not equal since the QM-AM inequality becomes an equality only when x = y x = y , we can conclude

1001 + 999 < 2 1000 \boxed{\sqrt{1001}+\sqrt{999} < 2\sqrt{1000}}

Shaurya Gupta
Nov 7, 2015

x + 1 x \sqrt{x+1} - \sqrt{x} is a decreasing function. So 1001 1000 < 1000 999 1001 + 999 < 2 1000 \sqrt{1001} - \sqrt{1000} < \sqrt{1000} - \sqrt{999} \implies \sqrt{1001} + \sqrt{999} \lt 2\sqrt{1000}

that's how I did it as well, except I first assumed one of them to be greater than the other and I arrived at a contradiction which meant that the original inequality was incorrect.

Aviral Jain - 5 years, 7 months ago
Amed Lolo
Jul 22, 2016

√1001+√999=√(1000+1)+√(1000-1) by squaring the expression =1000+1+1000-1+2×√(1000+1)×√(1000-1)=2000+2×(√1000^2-1)=2000+2×√999999. {2×√1000}^2=4000=2000+2×√1000000 So {2×√1000}^2>{√1000+√999}^2. 2√1000>√1001+√999 two expressions are positive values .

João Arruda
Feb 4, 2016

I don't know if my logic is right, but:

( 1001 + 999 ) 2 (\sqrt{1001} + \sqrt{999})^2 and ( 2 1000 ) 2 (2\sqrt{1000})^2

equals

1001 + 999 < 4 × 1000 1001 + 999 < 4 \times 1000

Left hand side is not correct

Collin Witt - 4 years, 10 months ago

LHS=1001+2√1001√999+999=2000+2√2000=2(1000+√2000) and note that √2000=20√5 so you have 2(1000+20√5). Divide both sides by 2 and you get. 1000+20√5 ? 2000 . It's easy to see here which one is greater.

Collin Witt - 4 years, 10 months ago
Vladimir Bozovic
Dec 27, 2015

sqrt(2)=1.41 ; sqrt(3)=1.73 ; sqrt(4)=2

sqrt(2) + sqrt(4) = 3.41 < 3.46 = 2*sqrt(3)

If it worked for 2 and 4 it must work for 999 and 1001 :)

As 999 + 1001 \sqrt{999}+\sqrt{1001} and 2 1000 2\sqrt{1000} are positive numbers its relation won't change if we square them. 999 + 1001 ¿ 2 1000 \sqrt{999}+\sqrt{1001} ¿ 2\sqrt{1000} 2000 + 2 100089 ¿ 4000 2000+2\sqrt{100089} ¿ 4000 400356 ¿ 4000000 \sqrt{400356} ¿ \sqrt{4000000} 400356 ¿ 4000000 400356 ¿ 4000000 400356 < 4000000 400356 < 4000000 This means the initial sign was < < , so 2 1000 2\sqrt{1000} is greater

David Orrell
Nov 9, 2015

The rate of change of value of n \sqrt{n} , as n increases incrementally, decreases. This means that 1000 \sqrt{1000} is going to be slightly above the average of 999 \sqrt{999} and 1001 \sqrt{1001} , such that 2 1000 2\sqrt{1000} is larger.

Sim Leek
Nov 7, 2015

O (n) > O (n^0.5)

A change in the positive direction has less and less of an effect on a less than linear equation, so the sqrt(999) will be further from sqrt(1000) than sqrt(1001).

We can rewrite 1001 + 999 \sqrt{1001} +\sqrt{999} as ( 1000 + d 1 ) + ( 1000 d 2 ) (\sqrt{1000} + d_1) + (\sqrt{1000} - d_2) , and

( 1000 + d 1 ) + ( 1000 d 2 ) = 2 1000 + ( d 1 d 2 ) (\sqrt{1000} + d_1) + (\sqrt{1000} - d_2) = 2\sqrt{1000} + (d_1 - d_2)

Now, since the difference between n \sqrt{n} and n + 1 \sqrt{n+1} becomes smaller as the value of n n increases, we have that d 1 < d 2 d 1 d 2 < 0 d_1 < d_2 \iff d_1 - d_2 < 0

and so 2 1000 + ( d 1 d 2 ) < 2 1000 1001 + 999 < 2 1000 2\sqrt{1000} + (d_1 - d_2) < 2\sqrt{1000} \implies \sqrt{1001} +\sqrt{999} < 2\sqrt{1000}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...