By parts

Calculus Level 3

Let f f be a function from [ 1 2 , 1 2 ] R \left[- \frac 12, \frac 12\right] \to \mathbb R such that

f ( arcsin ( x ) 2 ) = 4 e arcsin ( x ) x + arccos ( π 2 arccos ( x ) ) + 3 f \left(\frac{\arcsin(x)}{2}\right) = 4e^{\arcsin(x)}x + \arccos\left(\frac \pi 2-\arccos(x)\right) + 3

Find 1 2 1 2 f ( x ) d x \displaystyle \int_{-\frac 12}^\frac 12 f(x) \ dx .


The answer is 5.8978.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Feb 16, 2018

f ( arcsin x 2 ) = 4 e arcsin x x + arccos ( π 2 arccos x ) + 3 Let arcsin x = θ sin θ = x f ( θ 2 ) = 4 e θ sin θ + arccos ( π 2 ( π 2 θ ) ) + 3 Note that arccos x = π 2 arcsin x = 4 e θ sin θ + arccos θ + 3 Let arccos θ = ϕ cos ϕ = θ f ( cos ϕ 2 ) = 4 e cos ϕ sin ( cos ϕ ) + ϕ + 3 Let 2 u = cos ϕ f ( u ) = 4 e 2 u sin ( 2 u ) + arccos ( 2 u ) + 3 \begin{aligned} f \left(\frac {\color{#3D99F6}\arcsin x}2\right) & = 4e^{\color{#3D99F6}\arcsin x} x + \arccos \left(\frac \pi 2 - {\color{#D61F06}\arccos x}\right) + 3 & \small \color{#3D99F6} \text {Let } \arcsin x = \theta \implies \sin \theta = x \\ \implies f\left(\frac \theta 2\right) & = 4e^{\color{#3D99F6}\theta} \sin \theta + \arccos \left(\frac \pi 2 - {\color{#D61F06}\left(\frac \pi 2 - \theta\right)}\right) + 3 & \small \color{#D61F06} \text {Note that } \arccos x = \frac \pi 2 - \arcsin x \\ & = 4e^\theta \sin \theta + {\color{#3D99F6}\arccos \theta} + 3 & \small \color{#3D99F6} \text {Let } \arccos \theta = \phi \implies \cos \phi = \theta \\ \implies f \left(\frac {\cos \phi}2\right) & = 4e^{\cos \phi} \sin (\cos \phi) + \phi + 3 & \small \color{#3D99F6} \text {Let } 2u = \cos \phi \\ \implies f(u) & = 4e^{2u} \sin (2u) + \arccos (2u) + 3 \end{aligned}

Then we have:

1 2 1 2 f ( x ) d x = 1 2 1 2 4 e 2 x sin ( 2 x ) d x + 1 2 1 2 arccos ( 2 x ) d x + 1 2 1 2 3 d x Let t = 2 x = 2 1 1 e t sin t d t + 1 2 1 1 arccos t d t + 3 x 1 2 1 2 By integration by parts = 2 ( e t cos t + e t cos t d t ) + 1 2 ( t arccos t + t 1 t 2 d t ) 1 1 + 3 = 2 ( e t cos t + e t sin t e t sin t d t ) + 1 2 ( t arccos t 1 t 2 ) 1 1 + 3 = e t ( sin t cos t ) 1 1 + π 2 + 3 = e ( sin 1 cos 1 ) + e 1 ( sin 1 + cos 1 ) + π 2 + 3 5.898 \begin{aligned} \int_{-\frac 12}^\frac 12 f(x) \ dx & = \int_{-\frac 12}^\frac 12 4e^{2x} \sin (2x) \ dx +\int_{-\frac 12}^\frac 12 \arccos (2x)\ dx +\int_{-\frac 12}^\frac 12 3 \ dx & \small \color{#3D99F6} \text {Let } t = 2x \\ & = {\color{#3D99F6}2 \int_{-1}^1 e^t \sin t \ dt + \frac 12 \int_{-1}^1 \arccos t\ dt} + 3x \ \bigg|_{-\frac 12}^\frac 12 & \small \color{#3D99F6} \text {By integration by parts} \\ & = {\color{#3D99F6}2 \left(-e^t \cos t + \int e^t \cos t \ dt \right) + \frac 12 \left(t\arccos t + \int \frac t{\sqrt{1-t^2}}dt \right) \bigg|_{-1}^1} + 3 \\ & = {\color{#3D99F6}2 \left(-e^t \cos t + e^t \sin t - \int e^t \sin t \ dt \right) + \frac 12 \left(t\arccos t - \sqrt{1-t^2} \right) \bigg|_{-1}^1} + 3 \\ & = e^t (\sin t - \cos t)\ \bigg|_{-1}^1 + \frac \pi 2 + 3 \\ & = e(\sin 1 - \cos 1)+e^{-1}(\sin 1+\cos 1) + \frac \pi 2 + 3 \\ & \approx \boxed{5.898} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...