C L's sequence

Algebra Level 5

Define:

a n = 1 + 1 2 + + 1 n b n = a 1 + a 2 + + a n c n = b 1 2 + b 2 3 + + b n n + 1 \begin{aligned}a_n &= 1 + \frac 1 2 + \ldots + \frac 1 n\\ b_n &= a_1 + a_2 + \ldots + a_n\\ c_n &= \frac {b_1} 2 + \frac {b_2} 3 + \ldots + \frac {b_n}{n+1}\end{aligned}

If j j and k k are integers between -1000 and 1000 such that c 123 = j a 124 + k c_{123} = j \cdot a_{124} + k , what is the value of j k j- k ?

This problem is shared by C L , adapted from USAMO.


The answer is 373.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Pranav Arora
Oct 8, 2013

From the question,

a n = r = 1 n 1 r \displaystyle a_n=\sum_{r=1}^n \frac{1}{r}

b n = r = 1 n a r \displaystyle b_n=\sum_{r=1}^n a_r

c n = r = 1 n b r r + 1 \displaystyle c_n=\sum_{r=1}^n \frac{b_r}{r+1}

Lets begin with evaluating b n b_n .

b n = a 1 + a 2 + . . . + a n = 1 + ( 1 + 1 2 ) + . . . . + ( 1 + 1 2 + 1 3 + . . . . . + 1 n ) b_n=a_1+a_2+...+a_n=1+\left(1+\frac{1}{2}\right)+....+\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{n}\right)

= n + n 1 2 + n 2 3 + . . . . . = r = 1 n n r + 1 r \displaystyle =n+\frac{n-1}{2}+\frac{n-2}{3}+.....=\sum_{r=1}^n \frac{n-r+1}{r}

b n = ( n + 1 ) r = 1 n 1 r r = 1 n ( 1 ) = ( n + 1 ) a n n \displaystyle \Rightarrow b_n=(n+1)\sum_{r=1}^n\frac{1}{r}-\sum_{r=1}^n(1) =(n+1)a_n-n

Now lets evaluate c n c_n .

c n = r = 1 n b r r + 1 = r = 1 n ( r + 1 ) a r r r + 1 = r = 1 n a r r = 1 n r r + 1 \displaystyle c_n=\sum_{r=1}^n \frac{b_r}{r+1}=\sum_{r=1}^n \frac{(r+1)a_r-r}{r+1}=\sum_{r=1}^n a_r-\sum_{r=1}^n \frac{r}{r+1}

The first summation is b n b_n . The second summation can be evaluated as follows:

r = 1 n r r + 1 = r = 1 n ( 1 1 r + 1 ) = n a n + 1 + 1 \displaystyle \sum_{r=1}^n \frac{r}{r+1}=\sum_{r=1}^n \left(1-\frac{1}{r+1}\right)=n-a_{n+1}+1

c n = b n + a n + 1 n 1 = ( n + 1 ) a n + a n + 1 2 n 1 \Rightarrow c_n=b_n+a_{n+1}-n-1=(n+1)a_n+a_{n+1}-2n-1 .

It can be easily seen that

a n + 1 a n = 1 n + 1 a n = a n + 1 1 n + 1 \displaystyle a_{n+1}-a_n=\frac{1}{n+1} \Rightarrow a_{n}=a_{n+1}-\frac{1}{n+1}

Therefore, substituting for a n a_n

c n = ( n + 1 ) a n + 1 2 n 2 + a n + 1 = ( n + 2 ) a n + 1 2 ( n + 1 ) \displaystyle c_n=(n+1)a_{n+1}-2n-2+a_{n+1}=(n+2)a_{n+1}-2(n+1) .

Put n = 123 n=123 . c 123 = ( 125 ) a 124 248 \Rightarrow c_{123}=(125)a_{124}-248 . Hence, j = 125 j=125 and k = 248 k=-248 .

j k = 125 ( 248 ) = 373 j-k=125-(-248) =\fbox{373}

Moderator note:

Nice and carefully written solution!

Speechless! I guess this was quite a hard problem.

A Brilliant Member - 7 years, 8 months ago
Christopher Boo
Mar 19, 2014

First, we simplify b n b_n ,

a 1 + a 2 + a 3 + + a n a_1+a_2+a_3+\dots+a_n

= ( 1 ) + ( 1 + 1 2 ) + ( 1 + 1 2 + 1 3 ) + + ( 1 + 1 2 + 1 3 + + 1 n ) =(1)+(1+\frac{1}{2})+(1+\frac{1}{2}+\frac{1}{3})+\dots+(1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{n})

= 1 ( n ) + 1 2 ( n 1 ) + 1 3 ( n 2 ) + + 1 n ( 1 ) =1(n)+\frac{1}{2}(n-1)+\frac{1}{3}(n-2)+\dots+\frac{1}{n}(1)

= k = 1 n ( 1 k ( n + 1 k ) ) =\displaystyle \sum_{k=1}^n \Big (\frac{1}{k}(n+1-k)\Big )

= k = 1 n ( n + 1 k 1 ) =\displaystyle \sum_{k=1}^n \Big (\frac{n+1}{k}-1\Big )

= k = 1 n ( n + 1 k ) n =\displaystyle \sum_{k=1}^n \Big (\frac{n+1}{k}\Big )-n

= ( n + 1 ) k = 1 n ( 1 k ) n =(n+1) \displaystyle \sum_{k=1}^n \Big (\frac{1}{k}\Big )-n

= ( n + 1 ) ( a n ) n =(n+1)(a_n)-n

= ( n + 1 ) ( a n + 1 1 n + 1 ) n =(n+1)(a_{n+1}-\frac{1}{n+1})-n

= ( n + 1 ) ( a n + 1 ) 1 n =(n+1)(a_{n+1})-1-n

= ( n + 1 ) ( a n + 1 ) ( 1 + n ) =(n+1)(a_{n+1})-(1+n)

= ( n + 1 ) ( a n + 1 1 ) =(n+1)(a_{n+1}-1)

Then, we simplify c n c_n ,

b 1 2 + b 2 3 + b 3 4 + + b n n + 1 \displaystyle \frac{b_1}{2}+\frac{b_2}{3}+\frac{b_3}{4}+\dots+\frac{b_n}{n+1}

= k = 1 n ( b k k + 1 ) = \displaystyle \sum_{k=1}^n \Big (\frac{b_k}{k+1}\Big )

Substitute b n = ( n + 1 ) ( a n + 1 1 ) b_n=(n+1)(a_{n+1}-1) ,

= k = 1 n ( ( k + 1 ) ( a k + 1 1 ) k + 1 ) = \displaystyle \sum_{k=1}^n \Big (\frac{(k+1)(a_{k+1}-1)}{k+1}\Big )

= k = 1 n ( a k + 1 1 ) = \displaystyle \sum_{k=1}^n \Big (a_{k+1}-1\Big )

For c 123 c_{123} , substitute n = 123 n=123 ,

k = 1 123 ( a k + 1 1 ) \displaystyle \sum_{k=1}^{123} \Big (a_{k+1}-1 \Big )

= k = 1 123 ( a k + 1 ) 123 =\displaystyle \sum_{k=1}^{123} \Big (a_{k+1}\Big ) -123

= ( b 124 a 1 ) 123 =\Big (b_{124}-a_1\Big )-123

= b 124 124 =b_{124}-124

Substitute b n = ( n + 1 ) ( a n ) n b_n=(n+1)(a_n)-n ,

= ( 125 a 124 124 ) 124 =\Big (125a_{124}-124\Big )-124

= 125 a 124 248 =125a_{124}-248

Hence, j = 125 j=125 and k = 248 k=-248

j k = 373 j-k=373


Ok I have finished my solution. This part is not very important, just sharing how I get through this problem.

My first attempt is solve for b n b_n because I think that if I can express b n b_n as some a n a_n , it will be very useful when I solve for c n c_n . For me b n b_n is like the bridge between a n a_n and c n c_n .

When I try to simplify b n b_n , I stopped at

b n = ( n + 1 ) ( a n ) n b_n=(n+1)(a_n)-n

Then, I noticed when I simplify c n c_n and substitute b n b_n I will get an ugly

= k = 1 n ( ( k + 1 ) ( a k ) k k + 1 ) = \displaystyle \sum_{k=1}^n \Big (\frac{(k+1)(a_k)-k}{k+1}\Big )

So I continue my journey on b n b_n to find a better expression

b n = ( n + 1 ) ( a n + 1 1 ) b_n=(n+1)(a_{n+1}-1)

And finally I can get c n c_n with the help of both

b n = ( n + 1 ) ( a n + 1 1 ) b_n=(n+1)(a_{n+1}-1)

b n = ( n + 1 ) ( a n ) n b_n=(n+1)(a_n)-n

This means that my first stop is not useless at all!

Then I get a beautiful expression of

c 123 = 125 a 124 248 c_{123}=125a_{124}-248

excellent work!

Shikhar Jaiswal - 7 years, 2 months ago

Log in to reply

thanks!

Christopher Boo - 7 years, 2 months ago

Great solution ! : )

Karthik Kannan - 7 years, 2 months ago

Good solution that helps a lot for beginners like me!! Thanks

Thái An Lê - 7 years ago
Alex Wice
Oct 6, 2013

Observe b n = k = 1 n a k = n + 1 k k = n + ( n + 1 ) a n . b_n = \sum_{k=1}^n a_k = \sum \frac{n+1-k}{k} = -n + (n+1)a_n.

And c n = b k k + 1 = k k + 1 + a k c_n = \sum \frac{b_k}{k+1} = \sum \frac{-k}{k+1} + a_k

= n + b n + 1 k + 1 = ( 2 n + 1 ) + ( n + 1 ) a n + a n + 1 = ( 2 n + 2 ) + ( n + 2 ) a n + 1 = -n + b_n + \sum \frac{1}{k+1} = -(2n+1) + (n+1)a_n + a_{n+1} = -(2n+2) + (n+2)a_{n+1}

The difference is 3n+4. Plugging n=123, answer is 373 \fbox{373} .

Moderator note:

Nicely done!

Check out 1989 USAMO #1

Daniel Chiu - 7 years, 8 months ago

Log in to reply

Thanks for the reference. I found the problem among some old notes, but have no idea where it came from.

C Lim - 7 years, 8 months ago

Updated the reference. Thanks!

Calvin Lin Staff - 7 years, 8 months ago

Why is 125 and -248 the only solution? (See my note in my solution.)

Zi Song Yeoh - 7 years, 8 months ago

Log in to reply

Indeed, that is a good question which most people ignored.

Suppose another set of solutions existed, then we must have x a 123 + y = 0 x a_{123} + y = 0 for some pair of integers x , y x, y between -2000 and 2000. Can you reach a contradiction from here?

Note: Showing uniqueness of a solution can often be approached in a similar way.

Calvin Lin Staff - 7 years, 8 months ago

Let's try to address the general case instead. Note that b n 1 = i = 1 n 1 a i b_{n-1} = \sum_{i=1}^{n-1} a_i = 1 + ( 1 + 1 2 ) + ( 1 + 1 2 + 1 3 ) + + ( 1 + 1 2 + 1 3 + + 1 n 1 ) = 1+\left (1 + \frac{1}{2} \right ) + \left ( 1 + \frac{1}{2} + \frac{1}{3} \right ) + \cdots + \left ( 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n-1} \right ) Rearranging the terms, we obtain: b n 1 = n 1 + n 2 2 + n 3 3 + + 1 n 1 b_{n-1} = n-1 + \frac{n-2}{2} + \frac{n-3}{3} +\cdots + \frac{1}{n-1} = n + n 2 + n 3 + + 1 n 1 ( n 1 ) = n + \frac{n}{2} + \frac{n}{3} + \cdots + \frac{1}{n-1} - (n-1) = n ( 1 + 1 2 + 1 3 + + 1 n 1 ) n × 1 n ( n 1 ) = n \left (1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n-1} \right ) - n \times \frac{1}{n} - (n-1) = n × a n n = n \times a_n - n Thus, a i 1 = a i 1 i a_i-1= \frac{a_{i-1}}{i} for all i N i \in \mathbb{N} . Now, note that: c n = k = 2 n b k 1 k = k = 2 n ( a k 1 ) c_n= \sum \limits_{k=2}^{n} \frac{b_{k-1}}{k} = \sum \limits_{k=2}^{n} (a_k - 1) = a n + b n 1 a 1 ( n 1 ) = ( n + 1 ) a n 2 n =a_n + b_{n-1} - a_1 - (n-1) = (n+1)a_n - 2n Hence, c 123 = 125 a 124 248 c_{123} = 125 a_{124} - 248 . Hence, we have i = 125 i= 125 , j = 248 j= 248 , i j = 373 i-j= \boxed{373} .

Typo: c n 1 = k = 2 n b k 1 k = c_{n-1} = \sum \limits_{k=2}^{n} \frac{b_{k-1}}{k} = \cdots

Sreejato Bhattacharya - 7 years, 8 months ago
Zi Song Yeoh
Oct 11, 2013

Lemma 1 . b n n + 1 b n 1 n = 1 n + 1 \frac{b_{n}}{n + 1} - \frac{b_{n - 1}}{n} = \frac{1}{n + 1}

Proof . b n n + 1 b n 1 n = n b n ( n + 1 ) b n 1 n ( n + 1 ) \frac{b_{n}}{n + 1} - \frac{b_{n - 1}}{n} = \frac{nb_{n} - (n + 1)b_{n - 1}}{n(n + 1)} . We now compute n b n ( n + 1 ) b n 1 nb_{n} - (n + 1)b_{n - 1} .

n b n ( n + 1 ) b n 1 = n ( a 1 + a 2 + . . . + a n ) ( n + 1 ) ( a 1 + a 2 + . . . + a n 1 ) = n a n a 1 a 2 a n 1 = ( a n ) + ( a n a 1 ) + . . . + ( a n a n 1 ) = 1 1 1 + 2 1 2 + . . . + n 1 n = n nb_{n} - (n + 1)b_{n - 1} = n(a_{1} + a_{2} + ... + a_{n}) - (n + 1)(a_1 + a_2 + ... + a_{n - 1}) = na_{n} - a_1 - a_2 - a_{n - 1} = (a_n) + (a_n - a_1) + ... + (a_n - a_{n - 1}) = 1 \cdot \frac{1}{1} + 2 \cdot \frac{1}{2} + ... + n \cdot \frac{1}{n} = n .

This proves the lemma.

Lemma 2. b n = ( n + 1 ) a n n b_n = (n + 1)a_n - n

Proof. b n = i = 1 n ( 1 i ( n + 1 i ) ) = i = 1 n ( n + 1 i 1 ) = ( n + 1 ) ( 1 + 1 2 + 1 3 + . . . + 1 n ) n = ( n + 1 ) a n n b_n = \sum^{n}_{i = 1}(\frac{1}{i}(n + 1 - i)) = \sum^{n}_{i = 1}(\frac{n + 1}{i} - 1) = (n + 1)(1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}) - n = (n + 1)a_n - n . This proves the lemma.

Lemma 3 . c n = b n + 1 n 1 c_n = b_{n + 1} - n - 1

Proof : b n n + 1 = b n 1 n + 1 n + 1 = b n 2 n 1 + 1 n + 1 n + 1 = . . . = 1 2 + 1 3 + . . . + 1 n + 1 = a n + 1 1 \frac{b_n}{n + 1} = \frac{b_{n - 1}}{n} + \frac{1}{n + 1} = \frac{b_{n - 2}}{n - 1} + \frac{1}{n} + \frac{1}{n + 1} = ... = \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n + 1} = a_{n + 1} - 1 . (By repeated application of Lemma 1.)

c n = b 1 2 + b 2 3 + . . . + b n n + 1 = a 2 1 + a 3 1 + . . . + a n + 1 1 = b n + 1 n 1 c_n = \frac{b_1}{2} + \frac{b_2}{3} + ... + \frac{b_n}{n + 1} = a_2 - 1 + a_3 - 1 + ... + a_{n + 1} - 1 = b_{n + 1} - n - 1 . This proves the lemma.

Lemma 4 . c n = ( n + 2 ) a n + 1 ( 2 n + 2 ) c_n = (n + 2)a_{n + 1} - (2n + 2) .

Proof : By Lemma 2 2 and 3 3 ,

c n = b n + 1 n 1 = ( n + 2 ) a n + 1 n 1 n 1 = ( n + 2 ) a n + 1 ( 2 n + 2 ) c_n = b_{n + 1} - n - 1 = (n + 2)a_{n + 1} - n - 1 - n - 1 = (n + 2)a_{n + 1} - (2n + 2) . This proves the final lemma.

By Lemma 4 4 , j = 125 , k = 248 j = 125, k = -248 satisfies the condition.

So, j k = 125 ( 248 ) = 373 j - k = \boxed{125 - (-248) = 373} .

Note : However, I still can't figure out why this is the only answer. I just assume that this is unique from the problem statement.

Romeo Gomez
Apr 4, 2015

Start with b n b_n , b n = i = 1 n a i = 1 + ( 1 + 1 2 ) + ( 1 + 1 2 + 1 3 ) + + ( 1 + 1 2 + + 1 n ) , b_n=\sum_{i=1}^{n}a_i=1+(1+\frac{1}{2})+(1+\frac{1}{2}+\frac{1}{3})+\dots+(1+\frac{1}{2}+\dots +\frac{1}{n}), we notice that there are n n 1's, ( n 1 ) (n-1) 2's, ( n 2 ) (n-2) 3's, etc. So b n = i = 1 n 1 + i = 1 n 1 1 2 + i = 1 n 2 1 3 + + i = 1 2 1 n 1 + i = 1 1 1 n b_n=\sum_{i=1}^{n}{1}+\sum_{i=1}^{n-1}{\frac{1}{2}}+\sum_{i=1}^{n-2}{\frac{1}{3}}+\dots+\sum_{i=1}^{2}{\frac{1}{n-1}}+\sum_{i=1}^{1}{\frac{1}{n}}

b n = n + n 1 2 + n 2 3 + + 2 n 1 + 1 n b_n=n+\frac{n-1}{2}+\frac{n-2}{3}+\dots+\frac{2}{n-1}+\frac{1}{n} b n = i = 1 n ( n + 1 ) i i \boxed{b_n=\sum_{i=1}^{n}{\frac{(n+1)-i}{i}}}

we found a very easy expression for b n b_n .\

Now we are going to work with c n c_n c n = m = 1 n b m m + 1 , c_n=\sum_{m=1}^{n}{\frac{b_m}{m+1}}, c n = m = 1 n i = 1 m ( m + 1 ) i i m + 1 c_n=\sum_{m=1}^{n}{\frac{\sum_{i=1}^{m}{\frac{(m+1)-i}{i}}}{m+1}} c n = m = 1 n i = 1 m ( m + 1 ) i i ( m + 1 ) , c_n=\sum_{m=1}^{n}{\sum_{i=1}^{m}{\frac{(m+1)-i}{i(m+1)}}}, is easy to see that ( m + 1 ) i i ( m + 1 ) = 1 i 1 m + 1 \frac{(m+1)-i}{i(m+1)}=\frac{1}{i}-\frac{1}{m+1} c n = m = 1 n i = 1 m ( 1 i 1 m + 1 ) , c_n=\sum_{m=1}^{n}{\sum_{i=1}^{m}{(\frac{1}{i}-\frac{1}{m+1})}}, c n = m = 1 n ( i = 1 m 1 i i = 1 m 1 m + 1 ) , c_n=\sum_{m=1}^{n}{(\sum_{i=1}^{m}{\frac{1}{i}}-\sum_{i=1}^{m}{\frac{1}{m+1})}}, c n = m = 1 n ( a m m m + 1 ) , c_n=\sum_{m=1}^{n}{(a_m-\frac{m}{m+1})}, we see that m m + 1 = 1 m + 1 1 , -\frac{m}{m+1}=\frac{1}{m+1}-1, hence c n = m = 1 n ( a m + 1 m + 1 1 ) , c_n=\sum_{m=1}^{n}{(a_m+\frac{1}{m+1}-1)}, but a m + 1 m + 1 = a m + 1 , a_m+\frac{1}{m+1}=a_{m+1}, c n = m = 1 n ( a m + 1 1 ) , c_n=\sum_{m=1}^{n}{(a_{m+1}-1)}, c n = m = 1 n a m + 1 m = 1 n 1 , c_n=\sum_{m=1}^{n}{a_{m+1}}-\sum_{m=1}^{n}{1},

c n = m = 1 n a m + 1 n \boxed{c_n=\sum_{m=1}^{n}{a_{m+1}}-n} At this point we are going to write the m = 1 n a m + 1 \sum_{m=1}^{n}{a_{m+1}} depending on b n b_n ' s s to get a closed form. m = 1 n a m + 1 = a 2 + a 3 + + a n + a n + 1 , \sum_{m=1}^{n}{a_{m+1}}=a_2+a_3+\dots+a_n+a_{n+1}, add and substract a 1 a_1 , m = 1 n a m + 1 = a 1 + a 2 + a 3 + + a n + a n + 1 a 1 , \sum_{m=1}^{n}{a_{m+1}}={\color{#D61F06} {a_1} }+a_2+a_3+\dots+a_n+a_{n+1}-{\color{#D61F06} {a_1} }, we have that a 1 = b 1 a_1=b_1 hence m = 1 n a m + 1 = b n + 1 b 1 , \sum_{m=1}^{n}{a_{m+1}}=b_{n+1}-b_1, now go back to c n c_n c n = b n + 1 b 1 n \boxed{c_n=b_{n+1}-b_1-n}

Substituting b n + 1 b_{n+1} y b 1 b_1 c n = i = 1 n + 1 ( ( n + 1 ) + 1 ) i i 1 n c_n=\sum_{i=1}^{n+1}{\frac{((n+1)+1)-i}{i}}-1-n c n = i = 1 n + 1 ( n i + 2 i i i ) ( n + 1 ) c_n=\sum_{i=1}^{n+1}{(\frac{n}{i}+\frac{2}{i}-\frac{i}{i})}-(n+1) c n = i = 1 n + 1 ( n 1 i + 2 1 i 1 ) ( n + 1 ) c_n=\sum_{i=1}^{n+1}{(n\frac{1}{i}+2\frac{1}{i}-1)}-(n+1) c n = n i = 1 n + 1 1 i + 2 i = 1 n + 1 1 i i = 1 n + 1 1 ( n + 1 ) c_n=n\sum_{i=1}^{n+1}{\frac{1}{i}}+2\sum_{i=1}^{n+1}{\frac{1}{i}}-\sum_{i=1}^{n+1}{1}-(n+1) c n = n a n + 1 + 2 a n + 1 ( n + 1 ) ( n + 1 ) c_n=na_{n+1}+2a_{n+1}-(n+1)-(n+1) c n = ( n + 2 ) a n + 1 2 ( n + 1 ) . \boxed{c_n=(n+2)a_{n+1}-2(n+1)}. we're done. Let j = n + 2 , k = 2 ( n + 1 ) j=n+2, k=2(n+1) and n = 123 n=123 , so c 123 = ( 123 + 2 ) a 123 + 1 2 ( 123 + 1 ) c_{123}=(123+2)a_{123+1}-2(123+1) c 123 = 125 a 124 248 \boxed{c_{123}=125a_{124}-248} in this case j = 125 , k = 248 , j=125, k=-248, so j k = 373 \boxed{j-k=373} .

Looks good! Do you know how to explain the uniqueness of these integers?

Calvin Lin Staff - 6 years, 2 months ago

Log in to reply

sorry for answering late, amm no, I don't know, let me think :D

Romeo Gomez - 5 years, 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...