My Calculator don't have enough Input Power!

Algebra Level 5

Let f ( x ) = x 3 1 3 x + 3 x 2 f(x) = \frac {x^3}{1-3x+3x^2}

If the value of the expression below can be written in the form of a b \frac {a}{b} for coprime positive integers a , b a,b , what is the value of a + b a+b ?

f ( 1 2014 ) + f ( 2 2014 ) + + f ( 2013 2014 ) f \left ( \frac {1}{2014} \right ) + f \left ( \frac {2}{2014} \right ) + \ldots + f \left ( \frac {2013}{2014} \right )


The answer is 2015.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aareyan Manzoor
Dec 24, 2014

f ( x ) = x 3 1 3 x + 3 x 2 = x 3 ( 1 x ) 3 + x 3 f(x)=\dfrac{x^3}{1-3x+3x^2} =\dfrac{x^3}{(1-x)^3+x^3} f ( 1 x ) = ( 1 x ) 3 ( 1 ( 1 x ) ) 3 + ( 1 x ) 3 = ( 1 x ) 3 x 3 + ( 1 x ) 3 f(1-x)=\dfrac{(1-x)^3}{(1-(1-x))^3+(1-x)^3}=\dfrac{(1-x)^3}{x^3 +(1-x)^3} f ( x ) + f ( 1 x ) = x 3 ( 1 x ) 3 + x 3 + ( 1 x ) 3 x 3 + ( 1 x ) 3 = x 3 + ( 1 x ) 3 x 3 + ( 1 x ) 3 = 1 f(x)+f(1-x)=\dfrac{x^3}{(1-x)^3+x^3}+\dfrac{(1-x)^3}{x^3 +(1-x)^3}=\dfrac{x^3 +(1-x)^3}{x^3 +(1-x)^3}=1 there are 1006 such pairs, but 1007 2014 \dfrac{1007}{2014} or 1 2 \dfrac{1}{2} is left, compute f ( 1 2 ) = ( 1 2 ) 3 2 ( 1 2 ) 3 = 1 2 f(\dfrac{1}{2})=\dfrac{(\dfrac{1}{2})^3}{2(\dfrac{1}{2})^3}=\dfrac{1}{2} now add all ( 1006 × 1 ) + 1 2 = 1006 + 1 2 = 2013 2 (1006 \times 1 )+\dfrac{1}{2}=1006+\dfrac{1}{2}=\boxed{\dfrac{2013}{2}} and 2013 + 2 = 2015 = H a p p y N e w Y e a r ! 2013+2=\boxed{2015}=\boxed{\LARGE{\color{#20A900}{H}\color{#D61F06}{a}\color{#3D99F6}{pp}\color{#69047E}{y}\quad \color{#20A900}{N}\color{#D61F06}{e}\color{#3D99F6}{w}\quad\color{#20A900}{Y}\color{#D61F06}{e}\color{#3D99F6}{a}\color{#69047E}{r}\color{#624F41}{!}}}

I did the same way :)

Ahmed Arup Shihab - 6 years, 4 months ago

Fantastic solution!

Sriram Vudayagiri - 6 years, 4 months ago
Sujoy Roy
Dec 22, 2014

Given f ( x ) = x 3 1 3 x + 3 x 2 = x 3 1 3 x ( 1 x ) f(x)=\frac{x^3}{1-3x+3x^2}=\frac{x^3}{1-3x(1-x)} .

Therefore f ( x ) + f ( 1 x ) = x 3 1 3 x ( 1 x ) + ( 1 x ) 3 1 3 x ( 1 x ) = f(x)+f(1-x) = \frac{x^3}{1-3x(1-x)}+\frac{(1-x)^3}{1-3x(1-x)}= = x 3 + ( 1 x ) 3 1 3 x ( 1 x ) = 1 =\frac{x^3+(1-x)^3}{1-3x(1-x)}=1 .

Now, A = i = 1 2013 f ( i 2014 ) A=\sum^{2013}_{i=1}f(\frac{i}{2014})

= i = 1 1006 [ f ( i 2014 ) + f ( 2014 i 2014 ) ] + f ( 1007 2014 ) =\sum^{1006}_{i=1}[f(\frac{i}{2014})+f(\frac{2014-i}{2014})]+f(\frac{1007}{2014})

= i = 1 1006 [ f ( i 2014 ) + f ( 1 i 2014 ) ] + f ( 1 2 ) =\sum^{1006}_{i=1}[f(\frac{i}{2014})+f(1-\frac{i}{2014})]+f(\frac{1}{2})

= 1006 + 1 2 = 2013 2 =1006+\frac{1}{2}=\frac{2013}{2}

So, a + b = 2013 + 2 = 2015 a+b=2013+2=\boxed{2015}

The same way as mine :))

Thanh Viet - 6 years, 5 months ago

Log in to reply

Please change the second term in the question to f ( 2 2014 ) \Large{ f( \frac{2}{2014}) }

Department 8 - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...