cos ( 4 π + x ) + cos ( 4 π − x ) = a
cos ( 4 3 π + x ) − cos ( 4 3 π − x ) = b
a 2 + b 2 = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We can use the identities: cos ( θ + β ) = cos ( θ ) cos ( β ) − sin ( θ ) sin ( β ) and cos ( θ − β ) = cos ( θ ) cos ( β ) + sin ( θ ) sin ( β ) :
a = cos ( 4 π ) cos ( x ) − sin ( 4 π ) sin ( x ) + cos ( 4 π ) cos ( x ) + sin ( 4 π ) sin ( x ) a = 2 cos ( 4 π ) cos ( x )
b = cos ( 4 3 π ) cos ( x ) − sin ( 4 3 π ) sin ( x ) − cos ( 4 3 π ) cos ( x ) − sin ( 4 3 π ) sin ( x ) a = − 2 sin ( 4 3 π ) sin ( x )
Then we have:
a 2 + b 2 = 4 cos 2 ( 4 π ) cos 2 ( x ) + 4 sin 2 ( 4 3 π ) sin 2 ( x ) = 2 cos 2 ( x ) + 2 sin 2 ( x ) = 2
Wonderful. This is the solution I'm looking for.
⎩ ⎪ ⎨ ⎪ ⎧ a = cos ( 4 π + x ) + cos ( 4 π − x ) b = cos ( 4 3 π + x ) − cos ( 4 3 π − x ) = − sin ( 4 π + x ) + sin ( 4 π − x )
⎩ ⎨ ⎧ a 2 = cos 2 ( 4 π + x ) + 2 cos ( 4 π + x ) cos ( 4 π − x ) + cos 2 ( 4 π − x ) b 2 = sin 2 ( 4 π + x ) − 2 sin ( 4 π + x ) sin ( 4 π − x ) + sin 2 ( 4 π − x )
⇒ a 2 + b 2 = 1 + 2 cos ( 4 π + x ) cos ( 4 π − x ) − 2 sin ( 4 π + x ) sin ( 4 π − x ) + 1 = 1 − 2 cos 2 π + 1 = 1 − 0 + 1 = 2
Good solution.Solution which I have in mind is that use cos ( a + b ) formula to obtain first and second expression as 2 1 / 2 cos ( x ) and − 2 1 / 2 s i n ( x ) .Then using sine square plus cos square identity.
Log in to reply
I thought of that too, but I think this is simpler. Shouldn't it be up-voted?
just 1+1 =2
remember that cos x = sin (90 - x) :3
Problem Loading...
Note Loading...
Set Loading...
We can make frequent use of the cosine-sine transformation rule sin ( θ + 2 π ) = cos ( θ ) :
a 2 + b 2 = ( cos ( 4 π + x ) + cos ( 4 π − x ) ) 2 + ( cos ( 4 3 π + x ) − cos ( 4 3 π − x ) ) 2 = ( cos ( 4 π + x ) + cos ( x − 4 π ) ) 2 + ( cos ( 4 3 π + x ) − cos ( x − 4 3 π ) ) 2 = ( cos ( 4 π + x ) + sin ( x + 4 π ) ) 2 + ( cos ( 4 3 π + x ) − sin ( x − 4 5 π ) ) 2 = ( cos ( 4 π + x ) + sin ( x + 4 π ) ) 2 + ( cos ( 4 3 π + x ) − sin ( x + 4 3 π ) ) 2 = cos 2 ( 4 π + x ) + sin 2 ( 4 π + x ) + cos 2 ( 4 3 π + x ) + sin 2 ( 4 3 π + x ) + 2 sin ( 4 π + x ) cos ( 4 π + x ) + 2 sin ( 4 3 π + x ) cos ( 4 3 π + x ) = 2 + sin 2 ( 4 π + x ) + sin 2 ( 4 3 π + x ) = 2 + sin ( 2 x + 2 π ) + sin ( 2 x + 2 3 π ) = 2 + sin ( 2 x + 2 π ) − sin ( 2 x + 2 π ) = 2 .