Calciferous Cosine

Geometry Level 2

cos ( π 4 + x ) + cos ( π 4 x ) = a \large \cos { \left( \frac { \pi }{ 4 } +x \right) } +\cos { \left( \frac { \pi }{ 4 } -x \right) } =a

cos ( 3 π 4 + x ) cos ( 3 π 4 x ) = b \large \cos { \left( \frac { 3\pi }{ 4 } +x \right) } -\cos { \left( \frac { 3\pi }{ 4 } -x \right) } =b

a 2 + b 2 = ? { a }^{ 2 }+{ b }^{ 2 }=\ ?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Tijmen Veltman
Jun 19, 2015

We can make frequent use of the cosine-sine transformation rule sin ( θ + π 2 ) = cos ( θ ) \sin\left(\theta+\frac{\pi}2\right)=\cos(\theta) :

a 2 + b 2 = ( cos ( π 4 + x ) + cos ( π 4 x ) ) 2 + ( cos ( 3 π 4 + x ) cos ( 3 π 4 x ) ) 2 = ( cos ( π 4 + x ) + cos ( x π 4 ) ) 2 + ( cos ( 3 π 4 + x ) cos ( x 3 π 4 ) ) 2 = ( cos ( π 4 + x ) + sin ( x + π 4 ) ) 2 + ( cos ( 3 π 4 + x ) sin ( x 5 π 4 ) ) 2 = ( cos ( π 4 + x ) + sin ( x + π 4 ) ) 2 + ( cos ( 3 π 4 + x ) sin ( x + 3 π 4 ) ) 2 = cos 2 ( π 4 + x ) + sin 2 ( π 4 + x ) + cos 2 ( 3 π 4 + x ) + sin 2 ( 3 π 4 + x ) + 2 sin ( π 4 + x ) cos ( π 4 + x ) + 2 sin ( 3 π 4 + x ) cos ( 3 π 4 + x ) = 2 + sin 2 ( π 4 + x ) + sin 2 ( 3 π 4 + x ) = 2 + sin ( 2 x + π 2 ) + sin ( 2 x + 3 π 2 ) = 2 + sin ( 2 x + π 2 ) sin ( 2 x + π 2 ) = 2 . \begin{aligned} a^2+b^2 &= \left(\cos\left(\frac{\pi}4+x\right)+\cos\left(\frac{\pi}4-x\right)\right)^2\\& +\left(\cos\left(\frac{3\pi}4+x\right)-\cos\left(\frac{3\pi}4-x\right)\right)^2\\ &= \left(\cos\left(\frac{\pi}4+x\right)+\cos\left(x-\frac{\pi}4\right)\right)^2\\& +\left(\cos\left(\frac{3\pi}4+x\right)-\cos\left(x-\frac{3\pi}4\right)\right)^2\\ &= \left(\cos\left(\frac{\pi}4+x\right)+\sin\left(x+\frac{\pi}4\right)\right)^2\\& +\left(\cos\left(\frac{3\pi}4+x\right)-\sin\left(x-\frac{5\pi}4\right)\right)^2\\ &= \left(\cos\left(\frac{\pi}4+x\right)+\sin\left(x+\frac{\pi}4\right)\right)^2\\& +\left(\cos\left(\frac{3\pi}4+x\right)-\sin\left(x+\frac{3\pi}4\right)\right)^2\\ &=\cos^2\left(\frac{\pi}4+x\right)+\sin^2\left(\frac{\pi}4+x\right)\\& +\cos^2\left(\frac{3\pi}4+x\right)+\sin^2\left(\frac{3\pi}4+x\right)\\& +2\sin\left(\frac{\pi}4+x\right)\cos\left(\frac{\pi}4+x\right)\\& +2\sin\left(\frac{3\pi}4+x\right)\cos\left(\frac{3\pi}4+x\right)\\ &=2+\sin 2\left(\frac{\pi}4+x\right)+\sin 2\left(\frac{3\pi}4+x\right)\\ &=2+\sin \left(2x+\frac{\pi}2\right)+\sin \left(2x+\frac{3\pi}2\right)\\ &=2+\sin \left(2x+\frac{\pi}2\right)-\sin \left(2x+\frac{\pi}2\right)\\ &=\boxed{2}.\end{aligned}

We can use the identities: cos ( θ + β ) = cos ( θ ) cos ( β ) sin ( θ ) sin ( β ) \cos(\theta+\beta)=\cos(\theta)\cos(\beta)-\sin(\theta)\sin(\beta) and cos ( θ β ) = cos ( θ ) cos ( β ) + sin ( θ ) sin ( β ) \cos(\theta-\beta)=\cos(\theta)\cos(\beta)+\sin(\theta)\sin(\beta) :

a = cos ( π 4 ) cos ( x ) sin ( π 4 ) sin ( x ) + cos ( π 4 ) cos ( x ) + sin ( π 4 ) sin ( x ) a = 2 cos ( π 4 ) cos ( x ) a=\cos\left(\dfrac{\pi}{4}\right)\cos(x)-\sin\left(\dfrac{\pi}{4}\right)\sin(x)+\cos\left(\dfrac{\pi}{4}\right)\cos(x)+\sin\left(\dfrac{\pi}{4}\right)\sin(x) \\ a=2\cos\left(\dfrac{\pi}{4}\right)\cos(x)

b = cos ( 3 π 4 ) cos ( x ) sin ( 3 π 4 ) sin ( x ) cos ( 3 π 4 ) cos ( x ) sin ( 3 π 4 ) sin ( x ) a = 2 sin ( 3 π 4 ) sin ( x ) b=\cos\left(\dfrac{3\pi}{4}\right)\cos(x)-\sin\left(\dfrac{3\pi}{4}\right)\sin(x)-\cos\left(\dfrac{3\pi}{4}\right)\cos(x)-\sin\left(\dfrac{3\pi}{4}\right)\sin(x) \\ a=-2\sin\left(\dfrac{3\pi}{4}\right)\sin(x)

Then we have:

a 2 + b 2 = 4 cos 2 ( π 4 ) cos 2 ( x ) + 4 sin 2 ( 3 π 4 ) sin 2 ( x ) = 2 cos 2 ( x ) + 2 sin 2 ( x ) = 2 \begin{aligned} a^2+b^2&=4\cos^2\left(\dfrac{\pi}{4}\right)\cos^2(x)+4\sin^2\left(\dfrac{3\pi}{4}\right)\sin^2(x) \\ &=2\cos^2(x)+2\sin^2(x) \\ &=\boxed{2} \end{aligned}

Moderator note:

Wonderful. This is the solution I'm looking for.

Chew-Seong Cheong
Jun 22, 2015

{ a = cos ( π 4 + x ) + cos ( π 4 x ) b = cos ( 3 π 4 + x ) cos ( 3 π 4 x ) = sin ( π 4 + x ) + sin ( π 4 x ) \begin{cases} a = \cos{\left(\dfrac{\pi}{4}+x \right)} + \cos{\left(\dfrac{\pi}{4} - x \right)} \\ b = \cos{\left(\dfrac{3\pi}{4}+x \right)} - \cos{\left(\dfrac{3\pi}{4} - x \right)} = - \sin{\left(\dfrac{\pi}{4}+x \right)} + \sin{\left(\dfrac{\pi}{4} - x \right)} \end{cases}

{ a 2 = cos 2 ( π 4 + x ) + 2 cos ( π 4 + x ) cos ( π 4 x ) + cos 2 ( π 4 x ) b 2 = sin 2 ( π 4 + x ) 2 sin ( π 4 + x ) sin ( π 4 x ) + sin 2 ( π 4 x ) \begin{cases} a^2 = \cos^2{\left(\dfrac{\pi}{4}+x \right)} + 2 \cos{\left(\dfrac{ \pi} {4}+x \right)} \cos{\left(\dfrac{\pi}{4} - x \right)} + \cos^2{\left(\dfrac{\pi}{4} - x \right)} \\ b^2 = \sin^2{\left(\dfrac{\pi}{4}+x \right)} - 2 \sin{\left( \dfrac{ \pi} {4}+x \right)} \sin{\left(\dfrac{\pi}{4} - x \right)} + \sin^2{\left(\dfrac{\pi}{4} - x \right)} \end{cases}

a 2 + b 2 = 1 + 2 cos ( π 4 + x ) cos ( π 4 x ) 2 sin ( π 4 + x ) sin ( π 4 x ) + 1 = 1 2 cos π 2 + 1 = 1 0 + 1 = 2 \begin{aligned} \Rightarrow a^2 + b^2 & = 1 + 2 \cos{\left(\dfrac{ \pi} {4}+x \right)} \cos{\left(\dfrac{\pi}{4} - x \right)} \\ & \quad - 2 \sin{\left( \dfrac{ \pi} {4}+x \right)} \sin{\left(\dfrac{\pi}{4} - x \right)} + 1 \\ & = 1 - 2 \cos{\frac{\pi}{2}} + 1 \\ & = 1 - 0 + 1 = \boxed{2} \end{aligned}

Good solution.Solution which I have in mind is that use cos ( a + b ) \cos(a+b) formula to obtain first and second expression as 2 1 / 2 cos ( x ) 2^{1/2}\cos(x) and 2 1 / 2 s i n ( x ) -2^{1/2}sin(x) .Then using sine square plus cos square identity.

shivamani patil - 5 years, 11 months ago

Log in to reply

I thought of that too, but I think this is simpler. Shouldn't it be up-voted?

Chew-Seong Cheong - 5 years, 11 months ago

Log in to reply

Oh I forgot it. Upvoted now :)

shivamani patil - 5 years, 11 months ago
Rooney Great
Jul 19, 2015

just 1+1 =2

remember that cos x = sin (90 - x) :3

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...