Calculate the Integral again

Calculus Level 3

1 1 sin 1 ( x ) cos 1 ( x ) d x = a π 2 b \int_{-1}^1 \sin ^{-1}(x) \cos ^{-1}(x) \, dx=a-\frac{\pi ^2}{b}

where a , b a,b are positive integers. Submit a + b a+b .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Dec 16, 2017

With a couple of applications of Integration by Parts, we see that 1 1 ( sin 1 x ) 2 d x = [ x ( sin 1 x ) 2 ] 1 1 2 1 1 x sin 1 x 1 x 2 d x = 1 2 π 2 2 [ sin 1 x 1 x 2 ] 1 1 2 1 1 d x = 1 2 π 2 4 \begin{aligned} \int_{-1}^1 \big(\sin^{-1} x\big)^2\,dx & = \; \Big[x\big(\sin^{-1}x\big)^2\Big]_{-1}^1 - 2\int_{-1}^1 \frac{x\sin^{-1}x}{\sqrt{1-x^2}}\,dx \\ & = \; \tfrac12\pi^2 - 2\Big[-\sin^{-1}x\sqrt{1-x^2}\Big]_{-1}^1 - 2\int_{-1}^1\,dx \; = \; \tfrac12\pi^2 - 4 \end{aligned} Thus 1 1 sin 1 x cos 1 x d x = 1 1 sin 1 x ( 1 2 π sin 1 x ) d x = 1 2 π 1 1 sin 1 x d x 1 1 ( sin 1 x ) 2 d x = 4 1 2 π 2 \int_{-1}^1 \sin^{-1}x \cos^{-1}x\,dx \; = \; \int_{-1}^1 \sin^{-1}x\big(\tfrac12\pi - \sin^{-1}x\big)\,dx \; = \; \tfrac12\pi\int_{-1}^1 \sin^{-1}x\,dx - \int_{-1}^1 \big(\sin^{-1}x\big)^2\,dx \; = \; 4 - \tfrac12\pi^2 making the answer 4 + 2 = 6 4+2 = \boxed{6} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...