Calculate this when you’re brushing teeth

Algebra Level 3

Evaluate

1 × 2 × 3 × 4 + 2 × 3 × 4 × 5 + 3 × 4 × 5 × 6... + 2016 × 2017 × 2018 × 2019 2016 × 2017 × 2018 × 2019 \frac{1 \times 2 \times 3 \times 4+2 \times 3 \times 4 \times 5+3 \times 4 \times 5 \times 6...+2016 \times 2017 \times 2018 \times 2019}{2016 \times 2017 \times 2018 \times 2019}


The answer is 404.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) = 5 ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) 5 = ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) [ ( n + 5 ) n ] 5 = ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) ( n + 5 ) n ( n + 1 ) ( n + 2 ) ( n + 3 ) ( n + 4 ) 5 1 × 2 × 3 × 4 + 2 × 3 × 4 × 5 + + 2016 × 2017 × 2018 × 2019 2016 × 2017 × 2018 × 2019 = 1 × 2 × 3 × 4 × 5 0 × 1 × 2 × 3 × 4 + 2 × 3 × 4 × 5 × 6 1 × 2 × 3 × 4 × 5 + + 2016 × 2017 × 2018 × 2019 × 2020 2015 × 2016 × 2017 × 2018 × 2019 5 × 2016 × 2017 × 2018 × 2019 = 2016 × 2017 × 2018 × 2019 × 2020 5 × 2016 × 2017 × 2018 × 2019 = 404 \quad \left( n+1 \right) \left( n+2 \right) \left( n+3 \right) \left( n+4 \right) \\ =\dfrac { 5\left( n+1 \right) \left( n+2 \right) \left( n+3 \right) \left( n+4 \right) }{ 5 } \\ =\dfrac { \left( n+1 \right) \left( n+2 \right) \left( n+3 \right) \left( n+4 \right) \left[ \left( n+5 \right) -n \right] }{ 5 } \\ =\dfrac { \left( n+1 \right) \left( n+2 \right) \left( n+3 \right) \left( n+4 \right) \left( n+5 \right) -n\left( n+1 \right) \left( n+2 \right) \left( n+3 \right) \left( n+4 \right) }{ 5 } \\ \quad\dfrac{1\times2\times3\times4+2\times3\times4\times5+\dots+2016\times2017\times2018\times2019}{2016\times2017\times2018\times2019} \\=\dfrac {1\times2\times3\times4\times5-0\times1\times2\times3\times4+2\times3\times4\times5\times6-1\times2\times3\times4\times5+\dots+2016\times2017 \times2018 \times2019 \times2020 -2015\times2016\times2017\times2018\times2019}{5\times2016\times2017\times2018\times2019} \\ = \dfrac{2016 \times2017 \times2018 \times2019 \times2020}{5\times2016\times2017\times2018\times2019} \\ =\boxed{404}

Culver Kwan
Jan 23, 2019

1 × 2 × 3 × 4 + 2 × 3 × 4 × 5 + . . . + 2016 × 2017 × 2018 × 2019 2016 × 2017 × 2018 × 2019 \frac{1 \times 2 \times 3 \times 4+2 \times 3 \times 4 \times 5+...+2016 \times 2017 \times 2018 \times 2019}{2016 \times 2017 \times 2018 \times 2019} = 5 ( 1 × 2 × 3 × 4 + 2 × 3 × 4 × 5 + . . . + 2016 × 2017 × 2018 × 2019 ) 5 ( 2016 × 2017 × 2018 × 2019 ) \frac{5(1 \times 2 \times 3 \times 4+2 \times 3 \times 4 \times 5+...+2016 \times 2017 \times 2018 \times 2019)}{5(2016 \times 2017 \times 2018 \times 2019)} = 1 × 2 × 3 × 4 × 5 + 2 × 3 × 4 × 5 × 5 + . . . + 2016 × 2017 × 2018 × 2019 × 5 2016 × 2017 × 2018 × 2019 × 5 \frac{1 \times 2 \times 3 \times 4 \times 5+2 \times 3 \times 4 \times 5 \times 5+...+2016 \times 2017 \times 2018 \times 2019 \times 5}{2016 \times 2017 \times 2018 \times 2019 \times 5} = ( 1 + 5 ) ( 2 × 3 × 4 × 5 ) + . . . + 2016 × 2017 × 2018 × 2019 × 5 2016 × 2017 × 2018 × 2019 × 5 \frac{(1+5)(2 \times 3 \times 4 \times 5)+...+2016 \times 2017 \times 2018 \times 2019 \times 5}{2016 \times 2017 \times 2018 \times 2019 \times 5} = 2 × 3 × 4 × 5 × 6 + . . . + 2016 × 2017 × 2018 × 2019 × 5 2016 × 2017 × 2018 × 2019 × 5 \frac{2 \times 3 \times 4 \times 5 \times 6+...+2016 \times 2017 \times 2018 \times 2019 \times 5}{2016 \times 2017 \times 2018 \times 2019 \times 5} = 2016 × 2017 × 2018 × 2019 × 2020 2016 × 2017 × 2018 × 2019 × 5 \frac{2016 \times 2017 \times 2018 \times 2019 \times 2020}{2016 \times 2017 \times 2018 \times 2019 \times 5} = 404 404

Oh God, your LaTeX is a mess. Use \dfrac for fractions and use new lines man!

Adhiraj Dutta - 1 year, 1 month ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...