Calculate

Algebra Level 2

201 3 2 2 ( 2012 ) + 201 2 2 201 3 2 1 2013 = ? \large \sqrt { 2013^2-2 (2012)+\frac{2012^2}{2013^2}}-\frac{1}{2013} = \, ?

-2013 -2012 4026 2012

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ankit Nigam
Mar 30, 2016

201 3 2 2 ( 2012 ) + 201 2 2 201 3 2 = ( 2013 2012 2013 ) 2 \sqrt{2013^2 - 2(2012) + \dfrac{2012^2}{2013^2}} = \sqrt{\left(2013 - \dfrac{2012}{2013}\right) ^2}

\therefore question becomes ( 2013 2012 2013 1 2013 ) = 2012 \left(2013 - \dfrac{2012}{2013} - \dfrac{1}{2013}\right) = 2012

General computation: 2013 2 ( 2012 ) + 201 2 2 201 3 2 1 2013 = 4052169 4024 + 4048144 4052169 1 2013 = 1.640377 e + 13 4052169 1 2013 = 1.640377 e + 13 2013 1 2013 = 1.640377 e + 13 1 2013 = 2012 \begin{aligned}\sqrt{2013-2(2012)+\frac{2012^2}{2013^2}}-\frac{1}{2013} &= \sqrt{4052169-4024+\frac{4048144}{4052169}}-\frac{1}{2013} \\&= \sqrt{\frac{1.640377\ce{e}+13}{4052169}}-\frac{1}{2013} \\&=\frac{\sqrt{1.640377\ce{e}+13}}{2013} -\frac{1}{2013} \\&= \frac{\sqrt{1.640377\ce{e}+13} -1}{2013} \\&=2012 \space \space \space \square \end{aligned}

FIN!!! \large \text{FIN!!!}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...