Calculating square roots

Algebra Level 2

Calculate:

1 1 + 2 + 1 2 + 3 + 1 3 + 4 + + 1 63 + 64 \frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+ \frac 1{\sqrt 3+\sqrt 4} + \cdots +\frac{1}{\sqrt{63}+\sqrt{64}}


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 10, 2020

S = 1 1 + 2 + 1 2 + 3 + 1 3 + 4 + + 1 63 + 64 = 2 1 ( 2 + 1 ) ( 2 1 ) + 3 2 ( 3 + 2 ) ( 3 2 ) + 4 3 ( 4 + 3 ) ( 4 3 ) + + 64 63 ( 64 + 63 ) ( 64 63 ) = 2 1 2 1 + 3 2 3 2 + 4 3 4 3 + + 64 63 64 63 = 2 1 + 3 2 + 4 3 + + 64 63 = 1 + 64 = 1 + 8 = 7 \begin{aligned} S & = \frac 1{1+\sqrt 2} + \frac 1{\sqrt 2 + \sqrt 3} + \frac 1{\sqrt 3 + \sqrt 4} + \cdots + \frac 1{\sqrt{63} + \sqrt {64}} \\ & = \frac {\sqrt 2 -1}{(\sqrt 2+1)(\sqrt 2-1)} + \frac {\sqrt 3 - \sqrt 2}{(\sqrt 3+\sqrt 2)(\sqrt 3-\sqrt 2)} + \frac {\sqrt 4 - \sqrt 3}{(\sqrt 4+\sqrt 3)(\sqrt 4-\sqrt 3)}+ \cdots + \frac {\sqrt{64} - \sqrt{63}}{(\sqrt{64}+\sqrt{63})(\sqrt{64}-\sqrt {63})} \\ & = \frac {\sqrt 2 -1}{2-1} + \frac {\sqrt 3 - \sqrt 2}{3-2} + \frac {\sqrt 4 - \sqrt 3}{4-3}+ \cdots + \frac {\sqrt{64} - \sqrt{63}}{64-63} \\ & = \blue{\cancel{\sqrt 2}} - 1 + \red{\cancel{\sqrt 3}} - \blue{\cancel{\sqrt 2}} + \blue{\cancel{\sqrt 4}} - \red{\cancel{\sqrt 3}} + \cdot + \sqrt {64} - \red{\cancel{\sqrt {63}}} \\ & = - 1 + \sqrt{64} = - 1 + 8 = \boxed 7 \end{aligned}

Hậu Nguyễn
Oct 10, 2020

A = 1 1 + 2 + 1 2 + 3 + . . . + 1 63 + 64 A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{63}+\sqrt{64}}

A = 2 1 ( 1 + 2 ) ( 2 1 ) + 3 2 ( 2 + 3 ) ( 3 2 ) + . . . + 64 63 ( 63 + 64 ) ( 64 63 ) A=\frac{\sqrt{2}-1}{(1+\sqrt{2})(\sqrt{2}-1)}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{2}+\sqrt{3})(\sqrt{3}-\sqrt{2})}+...+\frac{\sqrt{64}-\sqrt{63}}{(\sqrt{63}+\sqrt{64})(\sqrt{64}-\sqrt{63})}

Using ( a b ) ( a + b ) = a 2 b 2 (a-b)(a+b)=a^2-b^2 , we have:

A = 2 1 2 1 + 3 2 3 2 + . . . + 64 63 64 63 A=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{64}-\sqrt{63}}{64-63}

A = 2 1 + 3 2 + . . . + 64 63 \Leftrightarrow A=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{64}-\sqrt{63}

A = 1 + 64 = 1 + 8 = 7 A=-1+\sqrt{64}=-1+8=\boxed{7}

Although you use A A in your solution, it is not necessary in the problem statement. It is better to give three terms in front instead of two.

Chew-Seong Cheong - 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...