Calculation is beautiful

Algebra Level 3

a 1 , a 2 , a 3 , , a 98 a_1,a_2,a_3,\ldots, a_{98} are terms in an arithmetic progression with common difference 1 such that their sum is 137.

What is the sum of the even terms of this progression? That is, what is the value of a 2 + a 4 + a 6 + + a 98 a_2+a_4+a_6+\cdots+a_{98} ?


The answer is 93.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

Let a 2 + a 4 + a 6 + + a 98 = S a_2+a_4+a_6+\ldots+a_{98}=S

2 S = a 2 + a 2 + a 4 + a 4 + + a 98 + a 98 2S= a_2+a_2+a_4+a_4+\ldots +a_{98}+a_{98}

2 S = a 1 + d + a 2 + a 3 + d + a 4 + + a 97 + d + a 98 2S= a_1+d+a_2+a_3+d+a_4+\ldots +a_{97}+d+a_{98}

= a 1 + a 2 + a 3 + a 4 + + a 97 + a 98 + 49 =a_1+a_2+a_3+a_4+\ldots+a_{97}+a_{98}+49 , since d = 1 d=1

Therefore, 2 S = 137 + 49 = 186 S = 93 2S=137+49=186 \Rightarrow S=\boxed{93}

Beautiful solution.

Sattik Biswas - 4 years, 9 months ago

Great concept.

Sushil Bansal - 3 years, 2 months ago
Sandeep Bhardwaj
Dec 11, 2014

Given: c o m m o n d i f f e r e n c e ( d ) = 1 common-difference(d)=1 , f i r s t t e r m = a 1 = a ( s a y ) first-term=a_1=a(say)

a 1 + a 2 + . . . . . . . + a 98 = 137 \therefore a_1+a_2+.......+a_{98}=137

98 2 . [ 2 a + 97 ] = 137 \dfrac{98}{2}.\left[ 2a+97 \right] =137

2 a + 97 = 137 49 \implies 2a+97=\dfrac{137}{49} /

To find : a 2 + a 4 + . . . . . . + a 98 ( 49 t e r m s ) a_2+a_4+......+a_{98} \left( 49 \ terms \right)

= 49 2 [ a 2 + a 98 ] \quad \quad =\dfrac{49}{2} \left[ a_2+a_{98} \right]

= 49 2 [ ( a + 1 ) + ( a + 97 ) ] \quad \quad =\dfrac{49}{2} \left[ (a+1)+(a+97) \right]

= 49 2 [ 2 a + 97 + 1 ] \quad \quad =\dfrac{49}{2} \left[ 2a+97+1 \right]

= 49 2 [ 137 49 + 1 ] \quad \quad =\dfrac{49}{2} \left[ \dfrac{137}{49}+1 \right]

= 137 2 + 49 2 = 186 2 = 93 \quad \quad =\dfrac{137}{2}+\dfrac{49}{2}=\dfrac{186}{2}=\boxed{93}

Justin Tuazon
Dec 13, 2014

L e t a 1 = x S i n c e a 1 , a 2 , a 3 , . . . i s a n a r i t h m e t i c p r o g r e s s i o n w i t h c o m m o n d i f f e r e n c e 1 , a 1 + a 2 + a 3 + . . . + a 98 = 137 x + ( x + 1 ) + ( x + 2 ) + ( x + 3 ) + . . . + ( x + 97 ) = 137 98 x + 97 ( 98 ) 2 = 137 98 x + 97 ( 49 ) = 137 98 x + 4753 = 137 98 x = 4616 x = 2308 49 a 2 + a 4 + a 6 + . . . + a 98 = ( x + 1 ) + ( x + 3 ) + ( x + 5 ) + . . . + ( x + 97 ) = 49 x + 49 ( 1 + 97 ) 2 = 49 x + 49 ( 49 ) = 49 x + 2401 S i n c e x = 2308 49 , 49 ( 2308 49 ) + 2401 = 2308 + 2401 = 93 a 2 + a 4 + a 6 + . . . + a 98 = 93 Let\quad { a }_{ 1 }=x\\ Since\quad { a }_{ 1 },{ \quad a }_{ 2 },\quad { a }_{ 3 },...\quad is\quad an\quad arithmetic\quad progression\\ with\quad common\quad difference\quad 1,\\ { a }_{ 1 }+{ a }_{ 2 }+{ a }_{ 3 }+...+{ a }_{ 98 }=137\\ x+(x+1)+(x+2)+(x+3)+...+(x+97)=137\\ 98x+\frac { 97(98) }{ 2 } =137\\ 98x+97(49)=137\\ 98x+4753=137\\ 98x=-4616\\ x=-\frac { 2308 }{ 49 } \\ \\ { a }_{ 2 }+{ a }_{ 4 }+{ a }_{ 6 }+...+{ a }_{ 98 }\\ =(x+1)+(x+3)+(x+5)+...+(x+97)\\ =49x+\frac { 49(1+97) }{ 2 } =49x+49(49)\\ =49x+2401\\ \\ Since\quad x=-\frac { 2308 }{ 49 } ,\\ 49\left( -\frac { 2308 }{ 49 } \right) +2401\\ =-2308+2401=93\\ \\ \boxed { { \therefore \quad a }_{ 2 }+{ a }_{ 4 }+{ a }_{ 6 }+...+{ a }_{ 98 }=93 } \\

Given, a 1 + a 2 + a 3 + . . . + a 98 = 137 a_{1} +a_{2} +a_{3}+ . . . +a_{98} =137

= > a 1 + ( a 1 + 1 ) + ( a 1 + 2 ) + . . . + ( a 1 + 97 ) = 137 =>a_{1} +(a_{1} +1) +(a_{1} +2)+ . . .+(a_{1}+97) =137

= > 98 a 1 + 1 + 2 + . . . + 97 = 137 => 98 a_{1} + 1+2+ . . . +97 =137

= > 98 a 1 + ( 97 98 ) / 2 = 137 => 98 a_{1} + (97*98)/2 =137

= > a 1 = 2308 / 49 =>a_{1} = -2308/49

So, a 2 = 2308 / 49 + 1 = 2259 / 49 a_{2} = -2308/49 +1 =-2259/49

Assume, a 2 + a 4 + . . . + a 98 = S a_{2} + a_{4} + . . . +a_{98} = S

Number of terms in this arithmetic progression is =49.

S = 49 / 2 ( 2 ( 2259 / 49 ) + 48 2 ) S = 49/2 (2(-2259/49) + 48*2)

= 2259 + 2352 =-2259 + 2352

= 93 = \boxed{93}

Aareyan Manzoor
Dec 20, 2014

first, the Am of the series (median) A M = a 1 + a 2 + a 98 98 = a 48 + a 49 2 = 137 98 AM=\dfrac{a_1 +a_2 \dots\dots\dots +a_{98}}{98} =\dfrac{a_{48}+a_{49}}{2}=\dfrac{137}{98} A M = a 2 + a 4 + a 6 + + a 98 49 = a 48 + a 50 2 AM =\dfrac{a_2 +a_4 +a_6 +\dots\dots+ a_{98}}{49}=\dfrac{a_{48}+a_{50}}{2} a 50 = a 49 + 1 , A M = a 48 + a 49 + 1 2 = 1 2 + a 48 + a 49 2 a_{50}=a_{49}+1,AM= \dfrac{a_{48}+a_{49}+1}{2}=\dfrac{1}{2}+\dfrac{a_{48}+a_{49}}{2} A M = 1 2 + 137 98 = 93 49 AM= \dfrac{1}{2}+\dfrac{137}{98}=\dfrac{93}{49} a 2 + a 4 + a 6 + + a 98 49 = 93 49 \dfrac{a_2 +a_4 +a_6 +\dots\dots +a_{98}}{49}=\dfrac{93}{49} a 2 + a 4 + a 6 + + a 98 = 93 a_2 +a_4 +a_6 +\dots\dots +a_{98}=\boxed{93}

Tina Sobo
Oct 16, 2016

There are 98 terms in the series A1, A2... A98, which is 49 pairs

If you consider each pair of consecutive numbers, you have A1, A1+1, A3, A3+1..., which is equal to our series, and its sum still equals 137.

If you simplify that series it would be 2 * sum of odd numbers + 49 = 137 or 2 sum of odd numbers = 88 Sum of odd numbers - 44

We need the even numbers = sum of odd + 49 (since each of the 49 even terms are one unit larger) = 44 + 49 = 93. OR you could say the sum of the even numbers is 137 (sum of full series) minus the sum of odd numbers (44): 137-44 = 93. Take your pick how you want to think about it.

a 98 = a 1 + 97 a_{98}=a_1+97

S = S= n 2 \frac{n}{2} ( a 1 + a n ) (a_1+a_n)

137 = 137= 98 2 \frac{98}{2} ( a 1 + a 98 ) (a_1+a_{98})

137 49 \frac{137}{49} = = a 1 + a 98 a_1+a_{98}

b u t : but: a 98 = a 1 + 97 a_{98}=a_1+97

137 49 \frac{137}{49} = = a 1 + a_1+ a 1 + 97 a_1+97

a 1 = a_1= 2308 49 \frac{-2308}{49}

a 98 = a_{98}= 2445 49 \frac{2445}{49}

The number of terms of the second Arithmetic Progression is n = n= 98 2 \frac{98}{2} = 49. =49. The first term of the second Arithmetic Progression is the second term of the first Arithmetic Progression, a 1 = a_1= 2308 49 \frac{-2308}{49} + 1 = +1= 2259 49 \frac{-2259}{49} . The sum of the second Arithmetic Progression is

S = S= n 2 \frac{n}{2} ( a 1 + a n ) (a_1+a_n)

S = S= 49 2 \frac{49}{2} ( 2259 49 + 2445 49 ) (\frac{-2259}{49}+\frac{2445}{49}) = = 93 93

Terrell Bombb
Oct 9, 2016

Given: a1+a2+a3+...+a96+a97+a98 = a1+(a1+1)+(a1+2)+(a1+3)+...+(a1+96)+(a1+97)=137

Problem: a2+a4+a6+...+a94+a96+a98

Sol'n: 98a1+(1+2+3+...+95+96+97)=137 --> 98a1+4753=137 --> a1 = -2308/49

a2+a4+a6+...+a94+a96+a98 = 49a1+(1+3+5+...+93+95+97) --> 49a1+2401

plug in the value for a1 to 49a1+2401 then we get 93

Peter Irausquin
Apr 7, 2016

Add 1-6: 1 + 2 + 3 + 4 + 5 + 6 = 21

Add even terms: 2 + 4 + 6 = 12

Add 1-8: 21+7+8= 36

Add even terms = 20

Add 1-10: 36+9+10=55

Add even terms: = 20+10 = 30

The sum of n consecutive numbers plus 1/2n, all divided by 2 is the sum of the even terms.

So 98 consecutive terms totals 137 means (137 + 49)/2 should be the sum of the even terms, which is 93.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...