Calculations with Trig

Geometry Level 3

What is the value of 2 ( sin 6 θ + cos 6 θ ) 3 ( sin 4 θ + cos 4 θ ) = ? 2(\sin^6\theta + \cos^6\theta) -3(\sin^4\theta+\cos^4\theta)=?

0 -1 2 -2 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

x = 2 ( sin 6 θ + cos 6 θ ) 3 ( sin 4 θ + cos 4 θ ) Note that a 3 + b 3 = ( a + b ) ( a 2 + b 2 a b ) = 2 ( sin 2 θ + cos 2 θ ) ( sin 4 θ + cos 4 θ sin 2 θ cos 2 θ ) 3 ( sin 4 θ + cos 4 θ ) Note that sin 2 x + cos 2 x = 1 = ( sin 4 θ + cos 4 θ ) 2 sin 2 θ cos 2 θ Note that a 2 + b 2 = ( a + b ) 2 2 a b = ( ( sin 2 θ + cos 2 θ ) 2 2 sin 2 θ cos 2 θ ) 2 sin 2 θ cos 2 θ = 1 \begin{aligned} x & = 2{\color{#3D99F6}(\sin^6 \theta + \cos^6 \theta)} - 3 (\sin^4 \theta + \cos^4 \theta) & \small \color{#3D99F6} \text{Note that }a^3+b^3 = (a+b)(a^2+b^2-ab) \\ & = 2{\color{#3D99F6}({\color{#D61F06}\sin^2 \theta + \cos^2 \theta}) (\sin^4 \theta + \cos^4 \theta - \sin^2 \theta \cos^2 \theta)} - 3(\sin^4 \theta + \cos^4 \theta) & \small \color{#D61F06} \text{Note that }\sin^2 x+\cos^2 x = 1 \\ & = - {\color{#3D99F6}(\sin^4 \theta + \cos^4 \theta)} - 2\sin^2 \theta \cos^2 \theta & \small \color{#3D99F6} \text{Note that }a^2+b^2 = (a+b)^2 -2ab \\ & = - \left(({\color{#D61F06}\sin^2 \theta + \cos^2 \theta})^2 - 2\sin^2 \theta \cos^2 \theta \right) - 2\sin^2 \theta \cos^2 \theta \\ & = \boxed{-1} \end{aligned}

Thank you for the nice solution.

Hana Wehbi - 3 years, 11 months ago
Arthur Conmy
Jul 28, 2017

Hee hee. Since it can be assumed the value is constant for all θ \theta , we can substitute θ = 0 \theta=0 , noting sin n ( 0 ) = 0 , n \sin^n(0) = 0, \forall n and cos n ( 0 ) = 1 , n \cos^n(0) = 1, \forall n . So 2 ( sin 6 θ + cos 6 θ ) 3 ( sin 4 θ + cos 4 θ ) = 2 ( 0 + 1 ) 3 ( 0 + 1 ) = 2 3 = 1 2(\sin^6\theta + \cos^6\theta)-3(\sin^4\theta+\cos^4\theta) \\ =2(0+1)-3(0+1) \\ =2-3 \\ =\boxed{-1}

Interesting. Thanks for sharing your idea.

Hana Wehbi - 3 years, 10 months ago

Sir is this method possible for other summilar trigonometry questions.

Rajkhush kumar - 3 years, 10 months ago
Jaydee Lucero
Jul 2, 2017

2 ( sin 6 θ + cos 6 θ ) 3 ( sin 4 θ + cos 4 θ ) = 2 ( sin 2 θ + cos 2 θ ) ( sin 4 θ sin 2 θ cos 2 θ + cos 4 θ ) 3 ( sin 4 θ + cos 4 θ ) = 2 ( 1 ) ( sin 4 θ sin 2 θ cos 2 θ + cos 4 θ ) 3 ( sin 4 θ + cos 4 θ ) = 2 ( sin 4 θ + cos 4 θ ) 2 sin 2 θ cos 2 θ 3 ( sin 4 θ + cos 4 θ ) = ( sin 4 θ + cos 4 θ ) 2 sin 2 θ cos 2 θ = sin 4 θ 2 sin 2 θ cos 2 θ cos 4 θ = ( sin 2 θ + cos 2 θ ) 2 = 1 2 = 1 \begin{aligned}2(\sin^6 \theta + \cos^6 \theta ) - 3(\sin^4 \theta +\cos^4 \theta) &= 2(\sin^2 \theta + \cos^2 \theta )(\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta) - 3(\sin^4 \theta +\cos^4 \theta) \\ &= 2(1)(\sin^4 \theta - \sin^2 \theta \cos^2 \theta + \cos^4 \theta) - 3(\sin^4 \theta +\cos^4 \theta)\\ &= 2(\sin^4 \theta +\cos^4 \theta) - 2 \sin^2 \theta \cos^2 \theta - 3(\sin^4 \theta +\cos^4 \theta) \\ &= -(\sin^4 \theta +\cos^4 \theta) - 2 \sin^2 \theta \cos^2 \theta \\ &= -\sin^4 \theta - 2 \sin^2 \theta \cos^2 \theta - \cos^4 \theta \\ &= -(\sin^2 \theta + \cos^2 \theta)^2 \\ &= -1^2 \\ &= \boxed{-1} \end{aligned}

Nicely done but l would mention the use of this identity in your solution a 3 + b 3 = ( a + b ) ( a 2 a b + b 2 ) a^3+b^3 = (a+b)(a^2-ab+b^2) and how you replaced ( a ) (a) by sin 2 θ \sin^2\theta and ( b b ) by cos 2 θ \cos^2\theta to be extra clear. Thank you for sharing your solution.

Hana Wehbi - 3 years, 11 months ago
Nitesh Chaurasia
Aug 12, 2017

Thank you for sharing your solution.

Hana Wehbi - 3 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...