Calculative Integral

Calculus Level 3

2 2010 0 1 x 1004 ( 1 x ) 1004 d x 0 1 x 1004 ( 1 x 2010 ) 1004 d x = ? 2^{2010}\frac{\displaystyle \int_{0}^{1}x^{1004}(1-x)^{1004}dx}{\displaystyle \int_{0}^{1}x^{1004}(1-x^{2010})^{1004}dx} = ?

3600 1005 4020 2010 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Parth Sankhe
Dec 2, 2018

Numerator :

0 1 ( x ( 1 x ) ) 1004 = 2 0 ½ ( x ( x 1 ) ) 1004 = 2 0 ½ ( ( ½ + 0 x ) ( 1 ( ½ + 0 x ) ) ) 1004 \int ^{1}_0 (x(1-x))^{1004}=2\int ^{½}_0 (x(x-1))^{1004 }= 2 \int ^{½}_0 ((½+0-x)(1-(½+0-x)))^{1004}

= 2 0 ½ ( ¼ x 2 ) 1004 2\int ^{½} _0 (¼-x^2)^{1004}

Putting x = t 2 x=\frac {t}{2} , we get

= 0 1 ( 1 t 2 ) 1004 4 1004 \int ^{1}_0 \frac {(1-t^2)^{1004}}{4^{1004}}

Denominator :

Put x 1005 = t x^{1005}=t , hence x 1004 d x = d t 1005 x^{1004}dx=\frac {dt}{1005}

= 0 1 ( 1 t 2 ) 1004 1005 \int ^{1}_0 \frac {(1-t^2)^{1004}}{1005}

Divide the above two integrals to cancel out the common integral, multiply by 2 2010 2^{2010} , and you should get the answer as 4 × 1005 = 4020 4×1005=4020

One suggestion Parth, use \displaystyle in front of \int to make the integral more visible and use \dfrac intead of \frac to make fractions bigger in case you dont know:)

A Former Brilliant Member - 2 years, 6 months ago

Log in to reply

Cool! Thanks!

Parth Sankhe - 2 years, 6 months ago
Aaghaz Mahajan
Dec 2, 2018

A simple application of Beta function ............

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...