If the above expression can be written as , where and are positive integers, and is square free, find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We use the product-to-sum identities sin x sin y = 2 1 ( cos ( x − y ) − cos ( x + y ) ) and cos x cos y = 2 1 ( cos ( x + y ) + cos ( x − y ) ) :
sin 1 0 ∘ sin 2 2 0 ∘ sin 4 0 ∘ = sin 1 0 ∘ sin 2 0 ∘ ( sin 2 0 ∘ sin 4 0 ∘ ) = 2 sin 1 0 ∘ sin 2 0 ∘ ( cos 2 0 ∘ − cos 6 0 ∘ ) = 2 sin 1 0 ∘ ( 2 sin 1 0 ∘ cos 1 0 ∘ ) ( cos 2 0 ∘ − 2 1 ) = cos 1 0 ∘ ( cos 2 0 ∘ − 2 1 ) = cos 1 0 ∘ cos 2 0 ∘ − 2 1 cos 1 0 ∘ = 2 1 ( cos 3 0 ∘ + cos 1 0 ∘ ) − 2 1 cos 1 0 ∘ = 4 3 + 2 1 cos 1 0 ∘ − 2 1 cos 1 0 ∘ = 4 3 .
Thus, a + b = 3 + 4 = 7 .