Calculator allowed!

Geometry Level 4

sin 2 2 0 sin 4 0 sin 1 0 \large \frac{\sin^2 20^{\circ} \sin 40^{\circ}}{\sin 10^{\circ}}

If the above expression can be written as a b \dfrac{\sqrt{a}}{b} , where a a and b b are positive integers, and a a is square free, find a + b a+b .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Steven Yuan
Mar 3, 2018

We use the product-to-sum identities sin x sin y = 1 2 ( cos ( x y ) cos ( x + y ) ) \sin x \sin y = \dfrac{1}{2}(\cos(x - y) - \cos(x + y)) and cos x cos y = 1 2 ( cos ( x + y ) + cos ( x y ) ) \cos x \cos y = \dfrac{1}{2}(\cos(x + y) + \cos(x - y)) :

sin 2 2 0 sin 4 0 sin 1 0 = sin 2 0 ( sin 2 0 sin 4 0 ) sin 1 0 = sin 2 0 ( cos 2 0 cos 6 0 ) 2 sin 1 0 = ( 2 sin 1 0 cos 1 0 ) ( cos 2 0 1 2 ) 2 sin 1 0 = cos 1 0 ( cos 2 0 1 2 ) = cos 1 0 cos 2 0 1 2 cos 1 0 = 1 2 ( cos 3 0 + cos 1 0 ) 1 2 cos 1 0 = 3 4 + 1 2 cos 1 0 1 2 cos 1 0 = 3 4 . \begin{aligned} \dfrac{\sin^2 20^{\circ} \sin 40^{\circ}}{\sin 10^{\circ}} &= \dfrac{\sin 20^{\circ} (\sin 20^{\circ} \sin 40^{\circ})}{\sin 10^{\circ}} \\ &= \dfrac{\sin 20^{\circ} (\cos 20^{\circ} - \cos 60^{\circ})}{2 \sin 10^{\circ}} \\ &= \dfrac{(2 \sin 10^{\circ} \cos 10^{\circ})(\cos 20^{\circ} - \frac{1}{2})}{2 \sin 10^{\circ}} \\ &= \cos 10^{\circ} \left (\cos 20^{\circ} - \dfrac{1}{2} \right) \\ &= \cos 10^{\circ} \cos 20^{\circ} - \dfrac{1}{2} \cos 10^{\circ} \\ &= \dfrac{1}{2} (\cos 30^{\circ} + \cos 10^{\circ}) - \dfrac{1}{2} \cos 10^{\circ} \\ &= \dfrac{\sqrt{3}}{4} + \dfrac{1}{2} \cos 10^{\circ} - \dfrac{1}{2} \cos 10^{\circ} \\ &= \dfrac{\sqrt{3}}{4}. \end{aligned}

Thus, a + b = 3 + 4 = 7 . a + b = 3 + 4 = \boxed{7}.

Nice, Actually, i have a bad habit,Whenever is see sin square or cos square , i generally use 2 cos 2 θ = 1 + cos 2 θ 2\cos^2 \theta = 1+\cos 2\theta or the one for the sin :D.

So That way also, answer is coming, and a bit easily i guess,

Md Zuhair - 3 years, 3 months ago

Log in to reply

Can you post your solution?

Vilakshan Gupta - 3 years, 3 months ago

Log in to reply

Ya sure. Till tomorrow I will try posting

Md Zuhair - 3 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...