Calculator is for the dull - 2

Algebra Level 3

150 3 2 + 149 4 2 149 6 2 2 × 1497 35 = ? \large{1503^2}+{1494^2}-{1496^2}-{{2}\times1497}-{35}=\, {?}


Inspiration


The answer is 2250000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Nihar Mahajan
Apr 13, 2016

Let 1494 = a 1494=a then the expression changes to:

( a + 9 ) 2 + a 2 ( a + 2 ) 2 2 ( a + 3 ) 35 (a+9)^2+a^2-(a+2)^2-2(a+3)-35

= a 2 + 18 a + 81 + a 2 a 2 4 a 4 2 a 6 35 =a^2+18a+81+a^2-a^2-4a-4-2a-6-35

= a 2 + 12 a + 36 =a^2+12a+36

= a 2 + 2 ( 2 a ) ( 6 ) + 6 2 =a^2+2(2a)(6)+6^2

= ( a + 6 ) 2 =(a+6)^2

= ( 1494 + 6 ) 2 =(1494+6)^2

= ( 1500 ) 2 = 2250000 =(1500)^2=\boxed{2250000}

a^2 + 12 + 36 should be a^2 + 12a + 36 and a^2 + 2(2)(6) + 6^2 should be a^2 + 2(a)(6) + 6^2

Karish Thangarajah - 5 years, 2 months ago

Great!!! :)

A Former Brilliant Member - 5 years, 2 months ago

Log in to reply

I used "a" for Abhay! :rage: :rage: :rage:

Nihar Mahajan - 5 years, 2 months ago

Log in to reply

T h a n k s ! \color{#3D99F6}{Thanks!}

A Former Brilliant Member - 5 years, 2 months ago

I am using x=1500 as approachment :) and the result is same

Sarono Handoyo - 5 years, 1 month ago

Let 1497 = x 1497=x then expression turns to:

( x + 6 ) 2 + ( x 3 ) 2 ( x 1 ) 2 2 x 35 \Rightarrow (x+6)^2+(x-3)^2-(x-1)^2-2x-35

= x 2 + 12 x + 36 + x 2 6 x + 6 x ( x 2 2 x + 1 ) 2 x 35 =x^2+12x+36+x^2-6x+6x-(x^2-2x+1)-2x-35

= x 2 + 6 x + 9 =x^2+6x+9

= ( x + 3 ) 2 =(x+3)^2

Pluging 1497 = x 1497=x :

( x + 3 ) 2 = ( 1497 + 3 ) 2 = ( 1500 ) 2 = 2250000 (x+3)^2=(1497+3)^2=(1500)^2=\boxed{2250000}

You should have used n n instead of x x . :P

Rishik Jain - 5 years, 2 months ago
Zakir Husain
May 22, 2020

Let x = 1496 {x=1496}

150 3 2 + 149 4 2 149 6 2 2 × 1497 35 = ( x + 7 ) 2 + ( x 2 ) 2 x 2 2 ( x + 1 ) 35 1503^2+1494^2-1496^2-2\times1497-35=(x+7)^2+(x-2)^2-x^2-2(x+1)-35

150 3 2 + 149 4 2 149 6 2 2 × 1497 35 = x 2 + 14 x + 49 + x 2 4 x + a x 2 2 x 2 35 = x 2 + 8 x + 16 1503^2+1494^2-1496^2-2\times1497-35=\cancel{x^2}+14x+49+x^2-4x+a-\cancel{x^2}-2x-2-35=x^2+8x+16

Now as 1496 = 1500 4 1496=1500-4 substituting x = y 4 x=y-4

150 3 2 + 149 4 2 149 6 2 2 × 1497 35 = ( y 4 ) 2 + 8 ( y 4 ) + 16 = y 2 8 y + 16 + 8 y 32 + 16 1503^2+1494^2-1496^2-2\times1497-35=(y-4)^2+8(y-4)+16=y^2-\cancel{8y}+16+\cancel{8y}-32+16

150 3 2 + 149 4 2 149 6 2 2 × 1497 35 = y 2 32 + 32 = y 2 1503^2+1494^2-1496^2-2\times1497-35=y^2-\cancel{32}+\cancel{32}={y^2}

150 3 2 + 149 4 2 149 6 2 2 × 1497 35 = 150 0 2 = ( 1 5 2 ) ( 10 0 2 ) = ( 225 ) ( 10000 ) = 2250000 1503^2+1494^2-1496^2-2\times1497-35=1500^2=(15^2)(100^2)=(225)(10000)=\boxed{{2250000}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...