Calculator is for the dull - 3

Algebra Level 2

1475 2 2 + 11560 × 14752 + 753 2 2 15064 × 20532 + 578 0 2 = ? 14752^2+11560\times14752+7532^2-15064\times20532+5780^2=?

Inspired by this and this


The answer is 169000000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 22, 2020

X = 1475 2 2 + 11560 × 14752 + 753 2 2 15064 × 20532 + 578 0 2 = 1475 2 2 + 2 ( 5780 × 14752 ) + 578 0 2 2 ( 7532 × 20532 ) + 753 2 2 = ( 14752 + 5780 ) 2 2 ( 7532 × 20532 ) + 753 2 2 = 2053 2 2 2 ( 7532 × 20532 ) + 753 2 2 = ( 20532 7532 ) 2 = 1300 0 2 = 169 000 000 \begin{aligned} X & = 14752^2 + 11560 \times 14752 + \blue{7532^2} - 15064 \times 20532 + \red{5780^2} \\ & = 14752^2 + 2(\red{5780} \times 14752) + \red{5780^2} - 2(\blue{7532} \times 20532) + \blue{7532^2} \\ & = (14752+\red{5780})^2 - 2(\blue{7532} \times 20532) + \blue{7532^2} \\ & = 20532^2 - 2(\blue{7532} \times 20532) + \blue{7532^2} \\ & = (20532 - 7532)^2 = 13000^2 = \boxed{\text{169 000 000}} \end{aligned}

Zakir Husain
May 22, 2020

Let S = 1475 2 2 + 11560 × 14752 + 753 2 2 15064 × 20532 + 578 0 2 S=14752^2+11560×14752+7532 ^2 -15064×20532+5780 ^2

As 11560 = 2 × 5780 11560=2\times5780 and 15064 = 2 × 7532 15064=2\times7532 therefore,

S = 1475 2 2 + 753 2 2 + 578 0 2 + 2 ( 5780 ) ( 14752 ) 2 ( 7532 ) ( 20532 ) S=14752^2+7532^2+5780^2+2(5780)(14752)-2(7532)(20532)

As 20532 = 5780 + 14752 20532=5780+14752 therefore,

S = 1475 2 2 + 753 2 2 + 578 0 2 + 2 ( 5780 ) ( 14752 ) 2 ( 7532 ) ( 5780 + 14752 ) S=14752^2+7532^2+5780^2+2(5780)(14752)-2(7532)(5780+14752)

S = 1475 2 2 + 753 2 2 + 578 0 2 + 2 ( 5780 ) ( 14752 ) 2 ( 7532 ) ( 5780 ) 2 ( 7532 ) ( 14752 ) S=14752^2+7532^2+5780^2+2(5780)(14752)-2(7532)(5780)-2(7532)(14752)

S = 1475 2 2 + ( 7532 ) 2 + 578 0 2 + 2 ( 5780 ) ( 14752 ) + 2 ( 7532 ) ( 5780 ) + 2 ( 7532 ) ( 14752 ) S=14752^2+(-7532)^2+5780^2+2(5780)(14752)+2(-7532)(5780)+2(-7532)(14752)

As ( x + y + z ) 2 = x 2 + y 2 + z 2 + 2 x y + 2 y z + 2 x z (x+y+z)^2=x^2+y^2+z^2+2xy+2yz+2xz therefore,

S = ( 14752 7532 + 5780 ) 2 = 1300 0 2 = 169000000 S=(14752-7532+5780)^2=13000^2=\boxed{169000000}

Answer is 169000000 169000000

I don't know how you get there - can anybody help me?

See above solution

Zakir Husain - 1 year ago

Log in to reply

Thank you - I was the first to solve it!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...