Calculator is for the dull - 4

Algebra Level 2

cot ( 4 arctan ( 1.5 ) 5 4 π ) = ? \cot\left(4\arctan(1.5)-\frac{5}{4}\pi\right)=?


The answer is 239.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Dwaipayan Shikari
Mar 13, 2021

Generally ,suppose tan 1 ( x ) ϕ = φ \tan^{-1}(x)-\phi=φ

x = tan ( ϕ + φ ) x = tan ( ϕ ) + tan ( φ ) 1 tan ( ϕ ) tan ( φ ) \implies x=\tan(\phi+φ) \implies x=\dfrac{\tan(\phi)+\tan(φ)}{1-\tan(\phi)\tan(φ)}

Here 4 tan 1 ( 3 2 ) = 2 tan 1 ( 3 2 ) + 2 tan 1 ( 3 2 ) 4\tan^{-1}(\frac{3}{2}) = 2\tan^{-1}(\frac{3}{2})+2\tan^{-1}(\frac{3}{2})

= tan 1 ( 3 1 9 4 ) + tan 1 ( 3 1 9 4 ) =\tan^{-1}(\frac{3}{1-\frac{9}{4}} )+\tan^{-1}(\frac{3}{1-\frac{9}{4}})

= tan 1 ( 24 5 1 144 25 ) = tan 1 ( 120 119 ) =-\tan^{-1}(\frac{\frac{24}{5}}{1-\frac{144}{25}}) =\tan^{-1}(\frac{120}{119})

Now x = 120 119 x=\dfrac{120}{119} And ϕ = 5 π 4 \phi=\dfrac{5π}{4}

So 120 119 = 1 + tan ( φ ) 1 tan ( φ ) 120 + 119 120 119 = cot ( φ ) = 239 \dfrac{120}{119}= \dfrac{1+\tan(φ)}{1-\tan(φ)} \implies \dfrac{120+119}{120-119}= \cot(φ)=239

Αctual question was about finding cot ( φ ) \cot(φ) . So answer is 239 \boxed{239}

Karan Chatrath
Mar 13, 2021

A = 4 arctan 1.5 5 π 4 A = 4 \arctan{1.5} - \frac{5\pi}{4} A = 4 arctan 1.5 4 arctan 1 arctan 1 A = 4 \arctan{1.5} - 4 \arctan{1} - \arctan{1} A = 4 arctan ( 1.5 1 1 + 1.5 ) arctan 1 A = 4 \arctan\left(\frac{1.5 - 1}{1 + 1.5}\right) - \arctan{1} A = 4 arctan ( 1 5 ) arctan 1 A = 4 \arctan\left(\frac{1}{5}\right) - \arctan{1} A = 2 ( arctan ( 1 5 ) + arctan ( 1 5 ) ) arctan 1 A = 2\left(\arctan\left(\frac{1}{5}\right) + \arctan\left(\frac{1}{5}\right)\right) - \arctan{1} A = 2 arctan ( 2 / 5 1 1 / 25 ) arctan 1 A = 2 \arctan\left(\frac{2/5}{1 - 1/25}\right)- \arctan{1} A = 2 arctan ( 5 12 ) arctan 1 A = 2 \arctan\left(\frac{5}{12}\right) - \arctan{1} A = arctan ( 5 12 ) + arctan ( 5 12 ) arctan 1 A = \arctan\left(\frac{5}{12}\right) + \arctan\left(\frac{5}{12}\right) - \arctan{1} A = arctan ( 10 / 12 1 25 / 144 ) arctan 1 A = \arctan\left(\frac{10/12}{1 - 25/144}\right) - \arctan{1} A = arctan ( 120 119 ) arctan 1 A = \arctan\left(\frac{120}{119}\right)- \arctan{1} A = arctan ( 120 / 119 1 1 + 120 / 119 ) A = \arctan\left(\frac{120/119 -1}{1 + 120/119}\right) A = arctan ( 1 239 ) A = \arctan\left(\frac{1}{239}\right) tan A = 1 239 \tan{A} = \frac{1}{239} cot A = 239 \implies \boxed{\cot{A} = 239}

Chew-Seong Cheong
Mar 13, 2021

cot ( 4 tan 1 3 2 5 π 4 ) = cot ( 4 θ 5 π 4 ) Let tan θ = 3 2 = tan ( 7 π 4 4 θ ) Note that cot ϕ = tan ( π 2 ϕ ) = tan ( π 4 4 θ ) = tan ( π 4 + 4 θ ) = tan 4 θ + 1 tan 4 θ 1 = 2 tan 2 θ 1 tan 2 2 θ + 1 2 tan 2 θ 1 tan 2 2 θ 1 also tan 2 θ = 2 3 2 1 9 4 = 12 5 = 120 119 + 1 120 119 1 = 120 + 119 120 119 = 239 \begin{aligned} \cot \left(4 \tan^{-1} \frac 32 - \frac {5\pi}4 \right) & = \cot \left(4 \theta - \frac {5\pi}4 \right) & \small \blue{\text{Let }\tan \theta = \frac 32} \\ & = \tan \left(\frac {7\pi}4 - 4 \theta \right) & \small \blue{\text{Note that } \cot \phi = \tan \left(\frac \pi 2 - \phi \right)} \\ & = \tan \left(-\frac \pi 4 -4 \theta \right) \\ & = -\tan \left(\frac \pi 4 + 4 \theta \right) \\ & = \frac {\tan 4\theta+1}{\tan 4\theta-1} \\ & = \frac {\frac {2\tan 2\theta}{1-\tan^2 2\theta}+1}{\frac {2\tan 2\theta}{1-\tan^2 2\theta}-1} & \small \blue{\text{also }\tan 2\theta = \frac {2 \cdot \frac 32}{1-\frac 94} = - \frac {12}5} \\ & = \frac {\frac {120}{119}+1}{\frac {120}{119}-1} \\ & = \frac {120+ 119}{120 - 119} \\ & = \boxed{239} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...