Calculators won't work!

What is the last digit of 3 2004 3^{2004} ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Viki Zeta
Jul 10, 2016

Power 1 2 3 4 5 6 7 8 Last digit 3 9 7 1 3 9 7 1 \begin{array}{l|c|c|c|c|c|c|c|c}\textrm{Power}&1&2&3&4&5&6&7&8& \\ \hline \textrm{Last digit}&3&9&7&1&3&9&7&1&\end{array}

On observing the above data.

For, 3 n , and n’s divisors 1 , 2 , 3 , 4 If highest divisor of n is 1, 3 n , ends with 3 If highest divisor of n is 2, 3 n , ends with 9 If highest divisor of n is 3, 3 n , ends with 7 If highest divisor of n is 4, 3 n , ends with 1 3 2004 ends with 1, as 4 is the highest divisor of n, where divisor of n 1 , 2 , 3 , 4 \text{For, }3^n \text{, and n's divisors } \in 1, 2, 3, 4\\ \text{If highest divisor of n is 1, }3^n \text{, ends with 3} \\ \text{If highest divisor of n is 2, } 3^n \text{, ends with 9} \\ \text{If highest divisor of n is 3, } 3^n \text{, ends with 7} \\ \text{If highest divisor of n is 4, } 3^n \text{, ends with 1} \\ \therefore 3^{2004} \text{ends with 1, as 4 is the highest divisor of n, where divisor of n } \in 1, 2, 3, 4

nicely explained.

Hana Wehbi - 4 years, 11 months ago

Does this apply for all numbers?

Satwik Murarka - 4 years, 10 months ago

Log in to reply

No. Not necessarily.

Viki Zeta - 4 years, 10 months ago

But 3^7 ends with 7 but it's highest divisor is 1 only.

Satwik Murarka - 4 years, 10 months ago

You should mention the power(0) in your explanation. (Of course, it is 1).

. . - 2 months, 2 weeks ago

3 2004 ( 3 4 ) 501 1 501 1 ( m o d 10 ) \large{3^{2004}\equiv (3^4)^{501}\equiv 1^{501}\equiv\color{#20A900}{\boxed{\boxed{1}}}\pmod{10}}

Sam Bealing
Jul 11, 2016

We can use the Euler Totient function to find the expression ( m o d 10 ) \pmod{10} because g c d ( 3 , 10 ) = 1 gcd(3,10)=1 :

ϕ ( 10 ) = 10 × ( 1 1 2 ) × ( 1 1 5 ) = 4 \phi{(10)}=10 \times \left (1-\dfrac{1}{2} \right) \times \left (1-\dfrac{1}{5} \right) =4

3 2004 3 2004 ( m o d 4 ) 3 0 1 ( m o d 10 ) 3^{2004} \equiv 3^{2004 \pmod{4}} \equiv 3^0 \equiv \boxed{\boxed{1}} \pmod{10}

Pianate Nate
Jul 10, 2016

There will be an infinite pattern when you always (x3) : 3,9,7,1,3,9,... (last digit). Knowing that 3 4 3^4 and 3 8 3^8 will have the last digit 1 , 3^2004 will also have the last digit 1. (Multiples of 4)

. .
Mar 27, 2021

2004 0 ( m o d 4 ) 3 2004 = 3 0 = 1 2004 \equiv 0 ( \mod 4 ) \rightarrow 3 ^ { 2004 } = 3 ^ { 0 } = \boxed { 1 } .

3 1 3 ( m o d 10 ) 3 2 9 ( m o d 10 ) 3 3 7 ( m o d 10 ) 3 4 1 ( m o d 10 ) { 3 }^{ 1 }\equiv 3(mod10)\\ { 3 }^{ 2 }\equiv 9(mod10)\\ { 3 }^{ 3 }\equiv 7(mod10)\\ { 3 }^{ 4 }\equiv 1(mod10)

3 2004 ( 3 4 ) 501 ( m o d 10 ) 3 2004 1 501 ( m o d 10 ) 3 2004 1 ( m o d 10 ) { 3 }^{ 2004 }\equiv { \left( { 3 }^{ 4 } \right) }^{ 501 }(mod10)\\ { 3 }^{ 2004 }\equiv { 1 }^{ 501 }(mod10)\\ { 3 }^{ 2004 }\equiv 1(mod10)

So, the last digit is 1 1 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...